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Abstract

Background: Magnesium (Mg) is essential for life and plays a crucial role in several biochemical and physiological
processes in the human body. Hypomagnesemia is common in all hospitalized patients, especially in critically ill
patients with coexisting electrolyte abnormalities. Hypomagnesemia may cause severe and potential fatal complications
if not timely diagnosed and properly treated, and associate with increased mortality.

Main body: Mg deficiency in critically ill patients is mainly caused by gastrointestinal and/or renal disorders and may lead
to secondary hypokalemia and hypocalcemia, and severe neuromuscular and cardiovascular clinical manifestations.
Because of the physical distribution of Mg, there are no readily or easy methods to assess Mg status. However, serum
Mg and the Mg tolerance test are most widely used. There are limited studies to guide intermittent therapy of Mg
deficiency in critically ill patients, but some empirical guidelines exist. Further clinical trials and critical evaluation of
empiric Mg replacement strategies is needed.

Conclusion: Patients at risk of Mg deficiency, with typical biochemical findings or clinical symptoms of hypomagnesemia,
should be considered for treatment even with serum Mg within the normal range.
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Background
Magnesium (Mg) is essential for life and plays a crucial
role in several biochemical and physiological processes
in the human body. Hypomagnesemia is common in
hospitalized patients (7–11%) and even more frequent in
patients with other coexisting electrolyte abnormalities
[1–3] and in critically ill patients [4, 5]. Hypomagnes-
emia can potentially cause fatal complications including
ventricular arrhythmia, coronary artery spasm, and sud-
den death. It also associates with increased mortality
and prolonged hospitalization [6, 7]. The role of Mg
status and therapy in critically ill patients has previously
been systematically reviewed elsewhere [8–10]. However,
we here present a review article focusing on the Mg
homeostasis and the physiological role of Mg in humans.
We then present the different causes and clinical and
biochemical manifestations of hypomagnesemia in critic-
ally ill patients and, finally, we discuss Mg therapy in the
intensive care unit (ICU) setting.

Magnesium homeostasis
Mg is the fourth most abundant cation in the human
body and the second most abundant intracellular cation.
A healthy human adult have a content of about 25 g or
1000 mmol Mg where approximately 60% stores in
bones, 20% in muscles, 20% in soft tissues, 0.5% in
erythrocytes, and 0.3% in serum [11]. About 70% of the
plasma Mg is ionized or complexed to filterable ions,
while 20% is bound to proteins. Figure 1 gives a general
overview of the Mg homeostasis in the human body.
Mg homeostasis in humans mainly involves the kid-

neys, the small bowel, and bones [12]. Gastrointestinal
absorption and renal excretion are the most important
mechanisms for controlling and regulating the Mg
homeostasis. The cellular regulation of Mg uptake and
release occurs slowly, and healthy individuals need to
ingest about 0.15–0.2 mmol/kg/day to contain a normal
Mg status. The intestinal absorption of dietary Mg de-
pends on both intake and body Mg status and occurs via
passive and active pathways [13, 14]. Presumably, only
ionized Mg is absorbed. Active transcellular Mg uptake
rely on specific Mg channels located in the large intes-
tines [14, 15] including the transient receptor potential
melastin (TRPM) 6 and TRPM 7. The passive absorption
is driven by a favorable electrochemical gradient and
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occurs mainly paracellulary through leaky epithelia pri-
marily located in the small intestines [14]. Additionally,
the process of passive absorption interacts with the
levels and absorption of calcium [14].
The kidneys are the primary site of Mg homeostasis

and play a key role in regulating and maintaining Mg
balance. Figure 2 illustrates the renal handling of Mg in
humans. The normal fractional urinary excretion of
filtered Mg is about 5% [16]. Mg reabsorption in the kid-
neys involves the proximal tubule, the thick ascending
loop of Henle (TAL), and the distal tubule [17, 18]. TAL
is the major site of Mg reabsorption and reabsorbs about
60–70% of filtered Mg [17, 18], and extracellular calcium
sensing receptors modulate the Mg absorption through

changes in the transepithelial voltage and alterations of
the permeability of the paracellular tight junctions [18].
The mechanisms of basolateral transport into the inter-
stitium are not fully understood. Moreover, the proximal
tubule reabsorbs 15–20% of filtered Mg, and the distal
tubule only 5–10% [17, 18], whereas there is no signifi-
cant reabsorption of Mg in the collecting ducts [19].

Physiological role of magnesium
Mg is a crucial cofactor in several enzyme systems [20]
including almost every aspect of biochemical metabol-
ism (e.g., DNA and protein synthesis, glycolysis, oxida-
tive phosphorylation). The essential enzymes adenylate
cyclase and sodium-potassium-adenosine triphosphatase

Fig. 1 Mg homeostasis. The figure gives an overview of the Mg homeostasis and the distribution of Mg throughout the human body including
gastrointestinal absorption and renal excretion

Fig. 2 Renal Mg handling. The figure gives an overview of the renal handling of Mg in the proximal convoluted tubule, loop of Henle, and distal
convoluted tubule
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depend on Mg for their normal function [21, 22]. Mg
serves as a molecular stabilizer for RNA, DNA, and
ribosomes. It is also suggested to modulate immune
functions [23, 24], and changes in the level of Mg are
reported to correlate with the levels of several immune
mediators such as interleukin-1, tumor necrosis factor-
alpha, interferon-gamma, and substance P [25–27]. More-
over, Mg are proven to contribute in several physiological
processes such as maintaining stability across cell mem-
branes, protein, and nucleic acid synthesis; regulating car-
diac and smooth muscle tone; controlling of mitochondrial
functions; and supporting cytoskeletal integrity [28].

Defining magnesium status
Normal serum concentration of Mg is 1.5 to 1.9 mEq/L
[29]. Unfortunately, there are no readily and easy
methods to assess Mg status. However, serum Mg and
the Mg tolerance test are most widely used [30]. The
serum Mg is easily available but may not adequately
reflect the body Mg stores because of the physiological
distribution of Mg. Notably, normal serum levels may be
found even if a patient is intracellularly Mg depleted
because intracellular stores are recruited to keep the
serum levels within its range, however, only until the
point where these stores cannot keep up. Although only
free Mg is biologically active, most test measure total
Mg concentrations, and hypoalbuminemic states may
therefore lead to false low Mg levels.
The Mg tolerance test is probably the most accurate

way to assess Mg status [31]. The test is used in special
occasions for example if the clinical suspicion of Mg
deficiency is strong and the serum Mg levels are normal.
The test is performed by measuring the Mg in a 24-h
urine collection, distribute parenteral Mg (often 2.4 mg/
kg of lean body weight given over the initial 4 h of the
second urine collection), and then repeat the 24-h urine
collection. Patients with a normal Mg status will excrete
the Mg load during the second urine collection. Reten-
tion of more than 20% of the administrated Mg is
suggestive of deficiency. Performing the test both gives
the diagnosis and treats a potential Mg deficiency. The
Mg tolerance test could easily be implemented in ICU
patients. However, patients with malnutrition, cirrhosis,
diarrhea, or long-term diuretic use typically have a posi-
tive result and the test is not useful in the setting of
renal Mg wasting or other renal dysfunctions.
An alternative to the total serum Mg and the Mg tol-

erance test is assessment of the ionized serum Mg2+

concentration which is the active form of Mg in plasma
[32]. It has a significant protein bound fraction, similar
to calcium, with the potential of large differences be-
tween total serum and ionized levels [33]. The estima-
tion of ionized Mg levels in patients cannot be made by
correcting for albumin [33]. Notably, it is still disputable

whether levels of serum ionized Mg or total serum Mg
should be used to follow-up Mg levels in critically ill
patients [7, 33–40]. Finally, the intracellular levels of Mg
can be measured using circulating red blood cells,
mononuclear cells, or skeletal muscle cells. Due to the
lack of an accurate and robust method to measure Mg
status in patients, the biochemical measurements should
always be supported by a clinical assessment of patients
at risk for Mg deficiency for timely and proper diagnosis
and treatment.

Causes of hypomagnesemia in critically ill
patients
The causes of hypomagnesemia in critically ill patients
are mainly a result of gastrointestinal disorders or renal
loss of Mg. Table 1 lists the differential diagnosis of Mg
deficiency in the ICU patients.

Gastrointestinal causes
Both the upper and lower intestinal tract fluid contain
Mg. Therefore, loss of gastrointestinal fluids can cause Mg
deficiency. Several conditions commonly seen in the ICU
patients can cause gastrointestinal loss of Mg leading to

Table 1 Differential diagnosis of Mg deficiency in the ICU setting

Gastrointestinal disorders

Prolonged nasogastric suction

Malabsorption syndromes

Extensive bowel resection

Acute and chronic diarrhea

Intestinal and biliary fistulae

Protein-calorie malnutrition (parenteral nutrition, anorexia, refeeding
syndrome)

Acute hemorrhagic pancreatitis

Primary intestinal hypomagnesemia (neonatal)

Renal loss

Chronic parenteral fluid therapy

Osmotic diuresis (glucose, mannitol, urea)

Hypercalcemia

Alcohol

Drugs (see Table 2)

Metabolic acidosis (starvation, ketoacidosis, alcoholism)

Renal diseases

Chronic pyelonephritis, interstitial nephritis, and glomerulonephritis

Diuretic phase of acute tubular necrosis

Postobstructive nephropathy

Renal tubular acidosis

Post-renal transplantation

Primary renal hypomagnesemia
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significant Mg depletion, such as vomiting and nasogastric
suction, diarrhea, enteritis, inflammatory bowel disease,
intestinal and biliary fistulas, intestinal surgery resections,
and pancreatitis [41–44].

Renal causes
Many critically ill patients have hypomagnesemia caused
by renal loss. The reabsorption of Mg2+ in the proximal
tubule is proportional to tubular fluid flow and sodium
reabsorption [17], and chronic parenteral fluid therapy,
particularly with sodium-containing fluid, may therefore
lead to Mg deficiency. The same mechanism may cause
urinary wasting of Mg in osmotic diuresis. However, the
most frequent cause of renal Mg wasting is medications,
diuretics being particularly important [45]. Carbonic anhy-
drase inhibitors, osmotic agents, furosemide, bumetanide,
and ethacrynic acid all increase Mg excretion [46],
whereas the effect of thiazide diuretics on renal Mg hand-
ling is controversial [45]. Moreover, the aminoglycoside
antibiotics [47], the chemotherapeutic agent cisplatin [48],
and the immunosuppressive agent cyclosporine [49] are
all reported to cause renal Mg wasting potentially causing
Mg deficiency. Notably, patients in the ICU often receive
several different combinations of intravenous medications

and might have impaired drug elimination capacity due to
reduced kidney and/or lived function which together with
potential drug-drug interactions might influence Mg
homeostasis. This aspect should be considered by physi-
cians treating ICU patients. Table 2 gives an overview of
the drugs that potentially cause hypomagnesemia and
their underlying mechanisms. Finally, metabolic acidosis
due to diabetic ketoacidosis, starvation, or alcoholism also
causes renal Mg wasting.

Biochemical and clinical manifestations of
hypomagnesemia
Hypomagnesaemia is often secondary to other disease
processes or drugs and the features of the primary
disease may mask the signs of an Mg deficiency. Thus, a
high index of suspicion is warranted [50]. An overview
of the biochemical and clinical manifestations of hypo-
magnesemia are given in Table 3.

Biochemical manifestations of hypomagnesemia
Hypokalemia
Hypokalemia is common in patients with Mg deficiency
and about half of the patients with clinically potassium defi-
ciency also have Mg depletion [51]. However, patients with

Table 2 Drugs associated with Mg deficiency and hypomagnesemia

Drugs Mechanisms causing Mg deficiency Ref

Renal loss

Diuretics

Loop Increased renal Mg excretion by affecting the transepithelial voltage and inhibiting passive
absorption.

[118]

Thiazides Enhance Mg entry into the cells in the distal convoluted tubule. [118]

Antimicrobial

Amphotericin B
Aminoglycosides
Capreomycin
Pentamidine

Renal urinary Mg wasting caused by nephrotoxins may be part of tubular necrosis and acute
renal failure. Notably, impairment in Mg reabsorption in the loop of Henle and distal tubules
may occur before the onset and may persist after the resolution of renal damage.

[19, 47, 119]

Chemotherapy

Cisplatin Renal urinary Mg wasting caused by nephrotoxins may be part of tubular necrosis and acute
renal failure. Cisplatin treatment is also associated with lowered intestinal absorption

[120]

Immunosuppressive

Calcineurin inhibitors Urinary Mg wasting due to a downregulation of the Mg2+ transport proteins (TRPM6) in the
loop of Henle and distal convoluted tubules.

[121]

Epidermal growth factor receptor inhibitors

Cetuximab
Panitumumab
Matuzumab

Urinary Mg wasting due to a downregulation of the TRPM6 in the loop of Henle and distal
convoluted tubules.

[122, 123]

Gastrointestinal loss

Proton-pump inhibitor Impairing the intestinal Mg absorption by inhibiting Mg transporters (TRPM6 and TRPM7). [124, 125]

Miscellaneous

Foscarnet A general potent chelator of divalent cations which therefore has the potential to reduce
ionized levels of Mg.

[126]

Cardiac glycosides Mg deficiency is associated with cardiac glycosides. The exact mechanisms are not known. [65]
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Mg depletion have a renal loss of potassium which is
caused by an increased potassium secretion in the connect-
ing tubule and the cortical collecting tubule. In the kidneys,
K+ is absorbed across the basolateral membrane via Na-K-
ATPase and secreted into the lumen of the connecting
tubule and cortical collecting tubule. This process is medi-
ated by luminal potassium channels (ROMK). With a total
lack of intracellular Mg2+, K+ ions move freely through the
ROMK channels. At physiologic intracellular Mg2+ concen-
tration, ROMK conducts more K+ ions inward than out-
ward. Hypomagnesaemia is associated with reduction of

intracellular Mg, which in turn will release this inhibitory
effect on potassium efflux. Due to the high concentration
of potassium in the cell, this will promote potassium from
the cell into the lumen which in turn leads to increased loss
of potassium in the urine [52].

Hypocalcemia
Hypocalcemia is a well-known manifestation of Mg defi-
ciency [53]. Patients with combined hypocalcemia and
hypomagnesemia also show low levels of parathyroid
hormone (PTH), and studies indicate that Mg deficiency
inhibit the release of parathyroid hormone (PTH) in pa-
tients with coexisting hypocalcemia. Moreover, parenteral
Mg stimulate PTH secretion [54, 55], and it is therefore
suggested that reduced PTH secretion is a key contributor
to hypocalcemia in Mg deficiency [55]. Animal studies
have suggested that bone resistance to PTH contributes in
hypocalcemia in Mg deficiency and studies in isolated
perfused bone have revealed that Mg depletion reduces
production of cyclic adenosine monophosphate (AMP) in
bone with high levels of PTH [56]. Patients with Mg
deficiency and hypocalcemia also present low levels of
calcitriol (1.25-dihydroxyvitamin D) and together with
impaired PTH secretion a reduced conversion of 25-
hydroxyvitamin D to 1.25-dihydroxyvitamin D in the
kidneys is suspected [57].

Clinical manifestations of hypomagnesemia
Cardiovascular
Mg has several effects on the cardiac conduction system.
It is an essential cofactor of the Na-K-ATP pump which
controls the movement of sodium and potassium across
cell membranes [58]; Mg levels therefore influence myo-
cardial excitability. Typical electrocardiogram changes
and dysrhythmias are most common [59]. Widening of
the QRS complex and peaking of T waves are described
in moderate Mg deficiency whereas prolongation of the
PR interval, progressive widening of the QRS complex,
and diminution of the T wave are seen in severe Mg
depletion [19]. Low serum Mg has been correlated to
increased risk of atrial fibrillation (AF) after cardiac
surgery, and also an association between serum Mg and
development of AF in individuals without cardiovascular
disease is described [59]. Ventricular premature com-
plexes, polymorphic ventricular tachycardia, and ventricu-
lar fibrillation are more severe complications [60, 61], and
these arrhythmias may be resistant to treatment [62].
Intracellular Mg depletion may be present even with
normal serum Mg levels and must always be considered
as a potential factor in arrhythmias. Other electrolyte
disturbances such as potassium or calcium deficiency are
often concurrent but not obligate [63, 64]. Notably, both
cardiac glycosides such as digitalis and Mg deficiency

Table 3 Clinical and biochemical effects of moderate to severe
Mg deficiency and hypomagnesemia

Biochemical

Hypokalemia

Renal K wasting

Decreased intracellular K

Hypocalcemia

Impaired parathyroid hormone secretion

Renal and skeletal resistance to parathyroid hormone

Resistance to vitamin D

Neuromuscular

Tetany

Spontaneous carpal-pedal spasm

Seizures

Vertigo, ataxia, nystagmus, athetoid, and choreiform movements

Muscular weakness, tremor, fasciculation, and wasting

Psychiatric: depression, psychosis

Cardiovascular

Dysrhythmias

Ventricular tachycardia (torsade de pointes)

Atrial fibrillation

Supraventricular tachycardia

Hypertension

Vasospasm

Electrocardiographic changes

Prolonged QT interval

Prolonged PR interval

Wide QRS

Peaked T waves

ST depression

Others

Acute myocardial infarction

Acute cerebral ischemia

Asthma exacerbation

Preeclampsia
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inhibit Na-K-ATPase and their adaptive effect contributes
to increased toxicity [65].
Patients with heart failure have an increased incidence

of hypomagnesemia probably due to the use of diuretics
(Table 2). Non-potassium-sparing diuretics reduce serum
and total-body potassium and Mg. Low levels of Mg and
potassium predispose for ventricular ectopic activity
which is a predictor for arrhythmic death [66]. However,
there is conflicting evidence regarding Mg levels and
cardiovascular death in patients with heart failure. A large
prospective study did not find Mg depletion as an inde-
pendent risk factor for death [67] whereas an association
between low levels of serum Mg and cardiovascular
mortality has been reported by others [68]. Mg supple-
mentation has previously been suggested for patients with
heart failure [69, 70].
Postoperative atrial fibrillation following coronary by-

pass (CAPG) occurs in 10–65% of the patients [71].
Hypomagnesemia is common after cardiac surgery and
Mg levels drop significantly and remain decreased for
about 24 h postoperatively [72–74]. The exact mecha-
nisms are not known but may be due to hemodilution
and renal wasting. Citrate in predeposited autologous
blood may also contribute to the decrease in the serum
Mg concentration [74]. Postoperative hypomagnesemia
is associated with a higher incidence of postoperative
arrhythmias and low cardiac index [73]. A meta-analysis
of seven double-blinded, placebo-controlled, randomized
clinical trials demonstrated that intravenous Mg signifi-
cantly reduced the incidence of postoperative atrial
fibrillation [75]. Notably, severe complications such as
hypotension, progressive respiratory failure, diminished
deep tendon reflexes, complete heart block, and cardiac
arrest have been reported in overdosing of Mg [76].
Recent studies investigating Mg therapy in acute myo-

cardial infarction (AMI) indicate that low serum Mg
levels increases the frequency of arrhythmias [77] and
that intravenous Mg supplements reduce the frequency
of ventricular arrhythmias in AMI [78]. Three large pro-
spective studies have investigated the role of Mg after
AMI. “The Leicester Intravenous Mg Intervention Trial
(LIMIT-2),” from 1992, randomized 2316 patients with
suspected AMI to receive Mg or placebo and found a
24% relative reduction in 28-day mortality rate in pa-
tients receiving Mg therapy compared to the placebo
group [79]. The Fourth International Study of Infarct
Survival Trial (ISIS-4) randomized 58,050 participants in
a 2 × 2 × 2 factorial study. The treatment comparisons
were captopril vs placebo, mononitrate vs placebo, and
intravenous Mg vs placebo. There was no significant re-
duction in 5 weeks mortality [80]. The MAGIC trial was
published in 2002 with the purpose to investigate early
administration of intravenous Mg to high-risk patients
with acute myocardial infarction. Over 6000 patients

with ST-elevation myocardial infarction (STEMI) were
randomized to receive intravenous Mg or placebo and
the study found no effect of early administration of
intravenous Mg on 30-day mortality [81]. One of the
main criticisms against ISIS-4 was the timing of the Mg
administration as ISIS-4 randomized participants until
24 h after onset of symptoms whereas previously animal
studies have stated that Mg must be given within 6 h after
vessel occlusion [82, 83] for adequate effect. Moreover,
Mg inhibits platelet activation by inhibiting Thromboxane
A2 and interfering with the IIb-IIIa receptor complex [50],
and Mg supplements are shown to inhibit platelet-
dependent thrombosis in patients with coronary artery
disease [84]. Based on the above, there are no indications
of Mg in AMI as a routine but it may be considered in
selected situations [85].

Neurovascular
Animal models suggest a cerebroprotective effect of Mg
[86] and Mg therapy given within 6 h of cerebral infarc-
tion probably reduce tissue damage [87]. Regarding
human studies, the intravenous Mg efficacy in stroke
trial (IMAGES) randomized 2589 patients to receive
intravenous Mg or placebo within 12 h of stroke onset
but this did not reduce mortality or disability [88].
Moreover, a study investigating administration of pre-
hospital Mg sulfate in acute stroke (FAST-MAG) did not
find reduction in disability at 90 days after disease onset
[86]. Neither has intravenous Mg been found to improve
clinical outcome in aneurysmal subarachnoid hemor-
rhages [89].

Neuromuscular
Neuromuscular hyperexitability is often the first clinical
manifestation in patients with hypomagnesemia [90].
Concomitant Mg and calcium deficiency enhance neuro-
logical symptoms, but also patients with isolated Mg
deficiency present neuromuscular hyperexitability [50].
Other neuromuscular symptoms are tetanus with posi-
tive Chvostek and Trousseau signs, muscle spasms, and
cramps [19] which probably all are due to lowering of
the threshold for nerve stimulation [91]. Hypomagnes-
aemia may also affect neurons in the brain and cause
seizures, likely due to increased glutamate-activated
depolarization. A decrease of extracellular Mg2+ allows a
greater influx of calcium in the presynaptic nerves and
releases a greater amount of neurotransmitters [92, 93].
Choreiform and athetoid movements, vertigo, apathy,
delirium, and vertical nystagmus are also described [94].
Vertical nystagmus is a rare but may be a diagnostically
and useful sign of severe hypomagnesaemia. In absence
of structural lesions in the cerebellum or vestibular
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device, vertical vertigo is only associated with severe
hypomagnesaemia or thiamine deficiency [95].

Asthma
Mg is established treatment of resistant asthma attacks
[96, 97]. Mg increases the effect of salbutamol [98]
through inhibiting Ca2+ influx by blocking the voltage-
dependent calcium channels which then relaxes the
smooth muscle [28]. Mg also has an immunoregulatory
effect by reducing pro-inflammatory mediators and pro-
moting synthesis of prostacyclin and nitric oxide which
stimulates broncho- and vasodilatation [99, 100]. Both
intravenous and nebulized Mg has been used in treating
acute asthma attacks. A review of 16 trials and 838
patients from 2012 showed that nebulized MgSO4 com-
bined with a nebulized beta2 agonist in adults did not
provide a benefit in terms of lung function or need for
hospitalization [101]. Another Cochrane review included
25 trials with a total of 2907 patients. The aim was to
determine efficacy and safety of inhaled MgSO4 adminis-
tered in acute asthma due to lung function and hospital
admission. The authors’ concluded with a modest add-
itional benefit for the use of inhaled β2-agonists and
ipratropium bromide [102].
Several systematic reviews and meta-analyses have

assessed the role of intravenous or nebulized MgSO4 in
acute asthma. A large double-blinded, placebo-controlled
trial from 2013 included 1109 participants randomized to
receive intravenous Mg, nebulized Mg, or placebo. The
aim was to determine whether intravenous or nebulized
MgSO4 improve symptoms of breathlessness and reduce
the need for hospital admission in adults with severe acute
asthma. The authors concluded that nebulized MgSO4 has
no role in the management of severe acute asthma in
adults and suggested a limited role for intravenous MgSO4

[103]. Another review including 2313 patients from 14
studies concluded that a single infusion of MgSO4

reduced hospital admissions and improved lung func-
tion in adults with acute asthma who did not respond
sufficiently to standard treatments [104]. Interestingly,

low Mg intake has been associated with a higher preva-
lence of asthma [105].

Preeclampsia
Mg therapy has been used for decades as eclampsia
prophylaxis. In 2002, the results from the “Magnesium
Sulphate for Prevention of Eclampsia trial” (MAGPIE)
were published. Ten thousand patients with preeclamp-
sia were randomized to receive Mg therapy or placebo.
The Mg therapy group showed significant fewer cases of
eclampsia compared to the placebo group, maternal
death was fewer among women who received Mg ther-
apy, and Mg did not seem to give harmful side effects to
either the mother or the fetus [106]. There are conflict-
ing evidence regarding the correlation between Mg
depletion and preeclampsia [107–109]. However, based
on MAGPIE, it seems reasonably using Mg therapy in
patients with preeclampsia although the cellular mecha-
nisms remain to be fully understood.

Magnesium therapy
Because serum Mg not necessarily reflects the total body
Mg status, patients at risk of magnesium deficiency or
with symptoms consistent with hypomagnesaemia should
be considered for treatment even with serum Mg within
the normal range [19, 31]. The magnitude of Mg defi-
ciency is hard to predict but may be 1–2 mEq/kg of body
weight [50]. In general, mild hypomagnesemia with no or
only mild symptoms can be treated with per oral supple-
ment [110] whereas parenteral Mg supplementation is
indicated if Mg concentration is < 0.5 mmol/L or if the
patient presents with significant symptoms. For critically
ill patients with mild to moderate hypomagnesemia,
empirically derived “rules of thumb” suggest that the
administration of 1 g (8 mEq) of intravenous Mg will
increase the serum Mg concentration by 0.15 mEq/L
within 18 to 30 h [111]. However, current practice of Mg
replacement therapy is mainly based upon acute myocar-
dial infarction trials (Table 4) which suggest an initial
bolus (e.g., 2 g (16 mEq)) followed by continuous infusions

Table 4 Continues Mg infusions over 24 h

Author N Age, years Male (%) Serum creatinine
(mg/dL)

Dose/diluent over 24 h Serum change
(mEq/L)

mEq/L
rise/g
Mg given

Shechter et al. [112] 96 66 65 ≤ 3 130 mEq/500 mL 5%
dextrose in water

1.65–2.82 0.007

Raghu et al. [113] 169 52.9 85 ≤ 3 146 mEq/100 mL 0.9%
NaCl

1.3–3.6 0.11

Rasmussen et al. [114] 56 64.6 70 ≤ 3 100 mEq/1000 mL 5%
dextrose in water

1.5–2.46 0.08

Woods et al. [79] 1159 61.4 74 ≤ 3.4 146 mEq/50 mL 0.9%
NaCl

1.64–3.1 0.08

Adapted from [127]
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up to 16 g (130 mEq) over 24 h [79, 112–114]. Severe
hypomagnesemia may require treatment with doses until
1.5 mEq/kg; doses < 6 g MgSO4 can be given over a period
of 8–12 h whereas higher doses should be administrated
over a time period > 25 h [115]. The slow distribution of
Mg in tissues and the rapidly renal excretion makes the
infusion time crucial.
In the acute clinical settings with hemodynamically un-

stable patients, including patients with severe arrhythmias,
established recommendations suggest giving 16 mEq
(8 mmol) of Mg over 2–15 min followed by a continuous
infusion [116, 117]. In the MAGPIE study [106], 32 mEq
(4 g) Mg was initially given, followed by 8 mEq (1 g) per
hour in women with preeclampsia [106]. Table 5 gives an
overview of suggested Mg therapy in specific clinical
setting. The evidence of using Mg as a routine in
other critical conditions such as asthma or CAPG is
still insufficient.
Patients with renal failure are at risk of developing

hypermagnesemia and Mg treatment is therefore gener-
ally not recommended for these patients. However, Mg
therapy should be considered in patients with moder-
ately reduced glomerular filtration rate and severe Mg
deficiency. The dose of Mg must be adjusted and
patients should be carefully monitored both biochem-
ically and clinically. High levels of Mg (> 4–5 mmol/L)
may give muscle weakness, reduced respiration, and in
worst case cardiac arrest. In case of intolerable intoxica-
tion; intravenous calcium (100–200 mg over 5–10 min)
should be administrated as it antagonizes the neuromus-
cular and cardiovascular effects of Mg [50, 115].

Conclusion

� Mg deficiency is common in critically ill patients,
may cause potentially fatal complications, and
associates with increased mortality.

� Mg deficiency in critically ill patients is mainly
caused by gastrointestinal and/or renal disorders and
may lead to secondary hypokalemia and

hypocalcemia, and severe neuromuscular and
cardiovascular clinical manifestations.

� Because of the physical distribution of Mg, there are
no readily or easy methods to assess Mg status.
However, serum Mg and the Mg tolerance test are
most widely used.

� Patients at risk of Mg deficiency, with typical
biochemical findings or clinical symptoms of
hypomagnesemia, should be considered for treatment
even with serum Mg within the normal range.

� There are limited studies to guide intermittent
therapy of Mg deficiency in critically ill patients but
some empirical guidelines exist. Further clinical
trials and critical evaluation of empiric Mg
replacement strategies is needed.
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Table 5 Treatment with Mg in specific clinical settings

Diagnose Suggested Mg doses Comments Ref

Hemodynamically stable
patients with severe
symptomatic
hypomagnesemia

1–2 g [8–16 mEq] (4–8 mmol) MgSO4 given
initially over 5–60 min followed by an infusion
4–8 g [32–64 mEq] (16–32 mmol) given slowly
over 12–24 h.

– [116, 128]

Torsades de pointes 2 g [16 mEq] (8 mmol) over 2–15 min
followed by a continuous infusion.

The rate of Mg infusion depends on the clinical
situation. Rapid infusion is associated with
hypotension and asystole.

[116, 117]

Preeclampsia 4 g [32 mEq] (16 mmol) over 10–15 min
followed by 1 g [8 mEq] (8 mmol) every
following hours.

Evidence is conflicting and no consensus about
the optimal Mg regimen exists. Suggested loading
doses vary from 4 to 6 g (32–48 mEq; 16–24 mmol)
and maintenance doses of 1–3 g (8–24 mEq; 4–12
mmol)/h.

[106]
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