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Abstract 

Background: Fontan surgery with cardiopulmonary bypass (CPB) causes tremendous systemic stress and inflam‑
matory responses, affecting postoperative organ function, morbidity, and mortality. Although this reaction triggers 
partially protective anti‑inflammatory responses, it is harmful in patients with single ventricle congenital heart defects. 
Despite decades of research, an effective anti‑inflammatory and stress defense strategy is lacking. This study investi‑
gated the influence of inhaled nitric oxide (NO) during CPB on early clinical results, including the duration of postop‑
erative respiratory support as a primary outcome and a panel of laboratory analytes.

Methods: In this study, 115 patients were randomized to the Fontan‑NO group (n = 48) and the Fontan group 
(n = 49). Eighteen patients were excluded from the study. The Fontan‑NO group received NO inhaled directly into the 
oxygenator during CPB. Clinical data were collected, and blood samples were drawn for analysis at repeated intervals. 
Multiplex assays were used to analyze a proteome profile of molecules involved in stress response, inflammation, 
metabolic reactions, as well as heart and lung protection.

Results: Fontan‑NO patients had significantly shorter respiratory support time with a median of 9.3 h (7.0; 13,2) vs 
13.9 h (3.7; 18.5) by the absolute difference of 4.6 h [95% confidence interval, − 30.9 to 12.3; (p = 0.03)]. In addition, 
they have a shorter time in intensive care (p = 0.04) and lower pulmonary artery pressure after CPB discontinuation 
(p = 0.04), 4 h (p = 0.03) and 8 h (p = 0.03) after surgery. Fontan‑NO patients also had a lower concentration of lactates 
(p = 0.04) and glucose after separation from CPB (p = 0.02) and lower catecholamine index (p = 0.042). Plasma factors 
analysis has shown a significantly higher concentration of interleukin‑10, and a lower concentration of interleukin‑6, 
interleukin‑8, interleukin‑1β, pentraxin, matrix metalloproteinase‑8, troponin‑I, creatine kinase myocardial band (CK‑
MB), and insulin in Fontan‑NO group.
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Background
Single ventricle heart defects are a challenging group of 
complex congenital heart diseases that require staged 
surgical treatment, ending with a Fontan procedure. 
Heart surgery with cardiopulmonary bypass (CPB), 
hypothermia, and cardioplegic heart arrest causes sys-
temic stress responses leading to endothelial dysfunc-
tion, neuroendocrine dysregulation, and deterioration 
of organs [1, 2]. These are particularly harmful in the 
increasing population of patients with Fontan circula-
tion [3, 4]). Furthermore, preoperative cyanosis and 
heart failure with postoperative Fontan physiology pre-
dispose patients to an exacerbated systemic inflamma-
tory response, capillary leak syndrome, heart and lung 
dysfunction, abdominal organ deterioration, and worsen-
ing clinical outcomes [5]. At the same time, these factors 
contribute to extended ventilatory and inotropic sup-
port, increased costs and decreased cost-effectiveness 
of therapy [6, 7]. Therefore, a search for adequate anti-
inflammatory and organ protection strategies is essential, 
particularly in the population undergoing complex pro-
cedures with CPB.

Nitric oxide (NO) is a keynote regulator of blood flow 
and tissue oxygenation. It also controls crucial cardiovas-
cular, respiratory, nervous, and immunological cellular 
processes. Intrinsic NO deficiency leads to organ and sys-
tem dysfunction, suggesting that extrinsic NO may have 
therapeutic applications [8, 9]. During CBP, hemodi-
lution, non-physiological shear stress, and hemolysis 
related to mechanical damage of erythrocytes increase 
free hemoglobin concentration in peripheral blood [10, 
11]. As a potent NO scavenger, free hemoglobin causes 
a rapid drop in NO bioavailability in the vascular system, 
leading to impaired tissue perfusion and organ dysfunc-
tion, systemic and local pro-inflammatory activation, 
ischemia–reperfusion damage and metabolic dysregula-
tion [12, 13]. Previous studies in children with tetralogy 
of Fallot showed that NO reduced inflammation markers 
and frequency of low cardiac output in the early postop-
erative period [14].

Prolonged ventilation support after cardiac surgery is 
linked with postoperative heart failure and complications 
that influence intensive care unit (ICU) length of stay 

and hospitalization time [15, 16]. Furthermore, previous 
studies revealed that extubation time was related to CPB 
duration and strongly predicted postoperative morbidity 
and mortality [17–19]. In the present study, we hypoth-
esized that respiration support time could be influenced 
by intraoperative NO inhalation into the oxygenator dur-
ing a critical drop of endogenous NO bioavailability in 
patients with endothelial dysfunction at baseline. Addi-
tionally, we determined the influence of NO on crucial 
early clinical outcomes and a proteome profile of mol-
ecules involved in stress response, inflammation, meta-
bolic reactions, and heart and lung protection.

Methods
Study design and Fontan surgery protocol
The study was approved by the Jagiellonian University 
Ethics Committee (KBET/176/B/2019) and registered 
with the Polish National Science Committee (NCN 
01/B/NZ5/04246). Informed consent was obtained from 
the patient’s parents before enrollment. The sample 
size determination was based on our preliminary study 
focused on clinical and laboratory outcomes in Fontan 
patients. The study revealed a reduction of ventilation 
time (using synchronized intermittent mandatory ven-
tilation; SIMV) after Fontan surgery with NO inhala-
tion by 4 h on average with a standard deviation of 9.7, 
a power of 0.80 and p < 0.05 [20]. The sample size of 96 
subjects (48 in each arm) is sufficient to detect a clinically 
important difference of 4  h between groups in shorten-
ing ventilatory support time (using SIMV), assuming a 
standard deviation of 9.7, using a two-tailed t-test of dif-
ference between means with 80% power and a 5% level of 
significance.

Surgical methods
All patients were treated with identical equipment and 
CPB strategy, including hypothermia, cardioplegic heart 
arrest [21], and intraoperative steroid (methylpredniso-
lone; 20  mg/kg) administration to the priming solution. 
None of the patients had ultrafiltration performed. The 
general anesthesia protocol was identical for all patients. 
During induction of anesthesia, patients received mida-
zolam (0.15–0.3  mg/kg), fentanyl (5–10  µg/kg) and 

Conclusions: NO inhaled into the oxygenator during CPB can improve short‑term clinical outcomes. It shortens 
intubation time and intensive care time. It reduces inflammatory response, improves myocardial and lung protection, 
and diminishes metabolic stress in patients with a single ventricle undergoing Fontan surgery.

Trial registration number: The trial was preregistered, supervised, and supported by The Polish National Science Center 
(NCN/ 01/B/ NZ5/ 04246).
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rocuronium (0.6–1.2 mg/kg). Anesthesia was maintained 
with midazolam, sufentanil, and neuromuscular blocker. 
All patients underwent routine Fontan surgery with 
3.5 mm fenestration.

Allocation of patients
After sample size determination, 97 patients were allo-
cated to the Fontan group (did not receive nitric oxide 
inhalation) or the Fontan-NO group (received NO inha-
lation) by computer-based block randomization (MS 
Excel). For this, ten patients in each block were rand-
omized on a 1:1 basis into two groups. Codes were com-
puter generated and sealed in the envelopes. The codes 
were not accessible to scientific assistants and treatment 
staff to ensure proper concealment. For each patient 
randomized, the following available code was used. The 
scientific assistant passed the sealed envelope on to the 
perfusionist on the day of surgery, just before the onset of 
CPB. The gas delivery device and the NO monitor were 
identically set up in all patients, regardless of the allotted 
group. The operating theatre and ICU staff were blinded 
to the study protocol. The perfusionist who obtained the 
patient’s code from the scientific assistant controlled the 
position of the NO outlet valve. A self-regulating servo-
mechanism maintained NO delivery at 20 ppm in the gas 
inlet mixture throughout CPB in Fontan-NO patients.

Blood sample collection and time‑points
The parents of 42 patients (18 patients from the Fontan–
NO group and 24 from the Fontan group) consented to 
collect additional blood samples for hematological and 
proteome analysis.As part of routine intraoperative and 
postoperative monitoring, peripheral blood (PB) sam-
ples were collected before surgery (1), intraoperatively: 
onset of CPB during cooling (2), after the opening of the 
cross-clamp (3), during warming after complete reperfu-
sion (4), after discontinuation of CPB (5), and at ICU 4 h 
(6), 8 h (7), 12 h (8), and 24 h (9) after surgery. Sample 
collectors, clinical investigators, assistants, and labora-
tory personnel were unaware of the study protocol. Blood 
samples were used to determine the concentrations of 
investigated analytes and hematologic parameters.

Statistical analysis
The normal distribution of the quantitative data was 
tested with the Shapiro–Wilk test. Normally distributed 
quantitative variables were presented as mean and stand-
ard deviation (SD). Data not normally distributed were 
presented using the median, first, and third quartiles (Q1; 
Q3). Differences between normally distributed data were 
assessed using a t-test. Data that were not normally dis-
tributed were compared with the Mann–Whitney test 
(including primary endpoint, i.e. SIMV time). Fisher’s 

exact test was used to determine the differences between 
the groups of categorical data. Repeated measure analysis 
of variance was used to screen for time effect and inter-
active effect between time and group. A Bonferroni post 
hoc analysis was performed to determine a significance 
level between groups at a particular time-points. Statis-
tically significant variables were selected for multiple 
regression after excluding collinearity. The stepwise pro-
cedure was applied to find predictors of respiratory time 
in the ICU, hospitalization time, catecholamine index, 
and duration of effusions. The value of α < 0.05 was con-
sidered statistically significant. Statistical analysis was 
performed using the data analysis software Dell Statistica 
(version 13; software.dell.com).

Semiquantitative analyte screening
The Human Cytokine Array Kit and Angiogenesis Array 
Kit (R&D Systems) evaluated 36 cytokines, chemokines, 
acute phase proteins, and 55 angiogenesis-related pro-
teins. The experiments were carried out according to the 
manufacturer’s protocol. For screening, plasma samples 
were mixed with detection antibodies and incubated 
with arrays containing duplicate spots of capture-labelled 
antibodies. After washing, the arrays were incubated 
with streptavidin-conjugated horseradish peroxidase. 
The chemiluminescent substrate was added, and signals 
were detected by a MicroChemi analyzer (DNR Bioimag-
ing System). Densitometric studies of the averaged pixel 
density of duplicate spots were carried out using Quan-
tity One software (Bio-Rad). Relative cytokine levels were 
calculated compared to control time point 1. An average 
background signal from negative controls was subtracted 
from each spot during the analysis. Positive control spots 
were also included on each membrane to ensure the 
repetitiveness of each assay.

Quantitative multiplex measurement of plasma cytokines
Quantitative analysis of proteins expression was per-
formed with Milliplex Map Kit assays (Merck Millipore) 
based on magnetic detection coupled with the Luminex 
xMAP platform. A detailed list of Milliplex kits is indi-
cated in Additional file 1: Table S1. Plasma samples were 
treated according to the manufacturer’s protocol. Briefly, 
96-well plates with appropriate fluorescent beads, con-
jugated with antibodies that captured analytes, were 
incubated with plasma samples. Subsequently, fluores-
cent-detecting antibodies were added, and the fluores-
cence level in each well was read using the Bio-Plex 200 
system (Bio-Rad) and analyzed using Bio-Plex Manager 
software (Bio-Rad). Analyte concentration was calculated 
based on standard curves for protein standards.
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Results
Clinical results
The study enrolled 115 patients who underwent elective 
Fontan surgery for single ventricle defects after initial 
palliative procedures. Eighteen patients were excluded 
from the study due to participation refusal, infections, 
severe extracardiac abnormalities, or procedure changes 
(Fig. 1). The study participants, aged 1.8 to 3.3 years, con-
sisted of 55 patients with hypoplastic left heart syndrome 
variants, 29 patients with tricuspid atresia, eight patients 
with hypoplasia of the right ventricle complex, seven 
patients with double inlet left ventricle, six patients with 
double outlet right ventricle with left ventricular hypo-
plasia, five patients with pulmonary atresia and intact 
ventricular septum, and five patients with heterotaxy 
syndrome.

Data on demographic variables and perioperative 
parameters are presented in Table  1. No differences in 
age, sex, single ventricle anatomy, cardiopulmonary 
bypass time, cross-clamp time, heart rate, systolic and 
diastolic blood pressure, and hospitalization time were 
observed. Patients in the Fontan-NO group had signifi-
cantly shorter respiratory support time with a median 
of 9.3  h (7.0; 13,2) vs 13.9  h (3.7; 18.5) by the absolute 

difference of 4.6 h [95% confidence interval, -30.9 to 12.3; 
(p = 0.03)]. In addition, they have a shorter time in inten-
sive care (p = 0.04) and significantly lower central venous 
pressure (which in Fontan patients reflects pulmonary 
artery pressure) after discontinuation of CPB [16.2 (14.1; 
21.6) vs 14.2 (9.4; 16.0); p = 0.04], four hours after sur-
gery [14.3 (10.6; 19.2) vs 10.9 (9.7; 14.3); p = 0.03], and 
8  h after surgery [17.11 (11.3; 19.1) vs 11.3 (8.7; 13.1); 
p = 0.03] compared to the Fontan group. Furthermore, 
they had a lower median post bypass lactate level [3.75 
(3.2; 6.5) vs 5.12 (2.9; 7.9); p = 0.04], post by-pass glu-
cose level [5.16 (4.1; 5.8) vs 9.3 (7.8; 11.5); p = 0.02], lower 
maximum catecholamine index [3.4 (2.8; 4.1) vs 5.6 (4.6; 
6.8); p = 0.042], and propensity for shorter duration of 
effusions [12.5 (10.5; 17.6) vs 15.2 (14.2; 21.4); p = 0.05] 
compared to Fontan patients (Table 1). Administration of 
NO during CBP significantly improved short-term clini-
cal measures.

Quantitative analysis of plasma factors
Based on the screening of proteome profilers, 19 ana-
lytes that were detectable at all time points were selected 
for high-sensitivity measurements: IL-10, IL-1b, TNF-
a, GM-CSF, IL-6, IL-8, SDF-1, VEGF, IL-1ra, MMP-8, 

Eligible patients
(n=115)

Excluded (18):
Decline to participate (10)
Infection (4)
Severe extracardiac anomalies (2)
Take-down (2)

Allocated to Fontan group (n=49)
Received treatment (49)
Clinical data collected (49)
Serum factors determined (24)

Allocation

Clinical data (n=49)
Plasma factors (n=24)

Analysis

Allocated to Fontan-NO group (n=48)
Received treatment (48)
Clinical data collected (48)
Serum factors determined (18)

Clinical data (n=48)
Plasma factors (18)

Enrollment

Randomized (n=97)

Fig. 1 Flow chart of the trial enrollment
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Table 1 Summary of clinical characteristics of patients enrolled in the study

Variable Group of patients p

Fontan (n = 49) Fontan NO (n = 48)

Male; n (%) 21 (42.8) 22 (45.8) 0.97

Female; n (%) 28 (57.1) 26 (54.2)

Age in days; mean (SD) 964.6 (228.7) 897.4 (242.4) 0.33

Dominant ventricle; right n (%) 22 (44.9) 20 (41.6) 0.90

Preoperative oxygen saturation (%SO2); mean (SD) 82.4 (12.3) 81.6 (18.4) 0.36

CPB time (min); mean (SD) 98.5 (13.1) 95.6 (18.3) 0.45

Cross‑clamp time (min); mean (SD) 33.7 (6.7) 36.5 (8.3) 0.12

Post‑CPB Lactate level (mmol/l); median (Q1; Q3)

 (5) 5.12 (2.9; 7.9) 3.75 (3.2; 6.5) 0.04

 (6) 2.87 (1.5; 8.2) 3.21 (1.9; 4.0) 0.69

 (7) 5.45 (2.9; 6.7) 4.34 (3.6; 5.1) 0.15

 (8) 3.2 (2.5) 2.6 (3.9) 0.44

 (9) 1.4 (0.8; 2.1) 1.3 (0.4; 0.6) 0.33

Post‑CPB glucose level (mmol/l); median (Q1; Q3)

 (5) 9.3 (7.8; 11.5) 5.16 (4.1; 5.8) 0.02

 (6) 7.6 (5.2; 12.4) 7.2 (5.9; 8.1) 0.06

 (7) 8.3 (4.4; 12.1) 6.3 (5.1; 8.3) 0.12

 (8) 6.8 (3.6; 9.1) 8.1 (7.3; 9.1) 0.62

 (9) 6.3 (2.6; 7.2) 6.1 (5.2; 7.3) 0.43

HR (beat/min); median (Q1; Q3)

 (5) 97.4 (93.2; 110.2) 103.9 (94.9; 114.9) 0.25

 (6) 113.8 (89.5; 130.4) 94.3 (78,3; 105.9) 0.12

 (7) 105.4 (97.1; 131.2) 96.9 (87.2; 113.1) 0.22

 (8) 110.5 (92.5; 126.4) 91.6 (82.5; 112.7) 0.08

 (9) 108.2 (95.9; 124.9) 106.5 (102.1; 109.6) 0.41

BP sys. (mmHg) median (Q1; Q3)

 (5) 98.9 (86.6; 110.2) 109.4 (105.8; 110.9) 0.10

 (6) 96.0 (84.5; 102.7) 97.0 (88.4; 118.4) 0.48

 (7) 106.1 (86.6; 119.9) 97.2 (81.7; 105.1) 0.62

 (8) 92.2 (78.8; 111.7) 97.2 (81.7; 105.1) 0.75

 (9) 90.9 (77.2; 116.4) 91.2 (88.1; 92.8) 0.51

BP diast. (mmHg) median (Q1; Q3)

 (5) 63.8 (56.6; 65.8) 67.4 (67.1; 68.5) 0.09

 (6) 63.8 (57.7; 73.3) 67.2 (62.6; 70.3) 0.06

 (7) 66.81 (52.8; 66.5) 70.1 (61.9; 76.2) 0.18

 (8) 65.8 (59.8; 66.3) 61.4 (55.7; 64.5) 0.13

 (9) 65.6 (61.7; 68.5) 60.5 (56.3; 62.0) 0.09

CVP / PAP (mmHg) median (Q1; Q3)

 (5) 16.2 (14.1; 21.6) 14.2 (9.4; 16.0) 0.04

 (6) 14.3 (10.6; 19.2) 10.9 (9.7; 14.3) 0.03

 (7) 17.11 (11.3; 19.1) 11.3 (8.7; 13.1) 0.03

 (8) 11.9 (8.1; 18.2) 10.1 (8.5; 15.7) 0.15

 (9) 11.5 (8.3; 13.1) 10.9 (8.5; 11.7) 0.70

ICU length of stay (d) median (Q1; Q3) 4.3 (3.4; 7.5) 3.4 (3.2; 5.1) 0.04

Maximal catecholamine index (µg/kg/min); median (Q1; Q3) 5.6 (4.6; 6.8) 3.4 (2.8; 4.1) 0.042

Respiratorysupport time (h); median (Q1; Q3) 13.9 (3.7; 18.5) 9.3 (7.0; 13.2) 0.03

Hospital stay; median (Q1; Q3) 17.2 (9.8; 26.5) 15.6 (12.1; 20.6) 0.44

Postoperative pleural effusions duration (days); median (Q1; Q3) 15.2 (14.2; 21.4) 12.5 (10.5; 17.6) 0.05

Data are presented as mean (SD) or median (Q1:Q3). Timepoint (5) after CPB discontinuation, (6) 4 h after surgery, (7) 8 h after surgery, (8) 12 h after surgery, (9) 24 h 

after surgery. CPB cardio-pulmonary by-pass, NO nitric oxide, PCICU pediatric cardiac intensive care unit
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pentraxin-3, prolactin, NT-proBNP, CK-MB, troponin I, 
TIMP-4, angiopoietin-2, insulin, and leptin. Additionally, 
routine biochemical and hematologic parameters related 
to stress response, which differed in ANOVA and were 
accessible at all time-points (blood glucose concentra-
tion, lactates concentration, the number of neutrophils), 
were included in the further analysis.

Fluctuations in measured cytokines and cardiac injury 
markers were observed in both the Fontan and Fontan-
NO groups (Fig.  2., Additional file 2: Table  S2). The 
Fontan-NO group had significantly higher levels of anti-
inflammatory IL-10 after CBP. In contrast, the levels of 
pro-inflammatory IL-1 β, IL6, and IL-8 were significantly 
reduced compared to the Fontan group (Fig.  2). Addi-
tionally, patients in the Fontant-NO group had signifi-
cantly lower levels of MMP-8, Pentraxin-3, CK-MB, and 
Troponin I.

A significant increase in insulin concentration was 
observed within the Fontan group compared to the 
preoperative level (Fig.  2S). In contrast, insulin con-
centration was lower in the Fontan-NO group and the 
difference was significant at time points 4 and 5 (Fig. 2S). 
A comparison between groups showed a significantly 
higher glucose concentration in the Fontan group at time 
points 3, 4 and 5 (Fig. 2U). As expected, the number of 
circulating neutrophils increased during surgery in both 
groups, although the rise was significant only within the 
Fontan group in ime-points 5 (p < 0.001) and 6 (p < 0.001) 
compared to the baseline level. In addition, a significant 
difference in neutrophil numbers was noted between 
groups (p = 0.011) 12 h after surgery. The remaining ana-
lytes (TNFα, NTproBNP, SDF 1, VEGF, leptin) showed 
insignificant variable characteristics and differences 
within and between groups (Fig. 2 and Additional file 2: 
Table S2).

Stepwise multiple regression analysis was performed 
to find factors related to early clinical outcomes, such 
as ICU time, maximal catecholamine index, respiratory 
support time, and duration of effusions. The results are 
presented in Table  2. There was a correlation between 
ICU time and respiratory support time and inflammatory 
factors (Il-6 and IL-8), while the catecholamine index and 
the time of effusion were related to the degree of myocar-
dial damage (CK-MB, TnI).

Discussion
To our knowledge, this study is the first to demonstrate 
the effects of inhaled NO on inflammatory and meta-
bolic stress responses and myocardial and lung protec-
tion in patients during Fontan surgery. The influence of 
NO was clinically significant, as seen with the shortened 
respiratory support time, lower catecholamine index, and 
shorter time in intensive care. Furthermore, we showed 
NO’s protective, anti-inflammatory, and metabolic 
stress-relieving effects through proteomic analysis of 
inflammatory cytokines, heart and lung damage indica-
tors, and metabolic markers.

Early mortality after Fontan surgery is low and reported 
as 1–7% [22, 23]. However, Fontan-specific postopera-
tive problems still contribute to prolonged postoperative 
recovery [24–26].Heart surgery with cardiopulmonary 
bypass (CPB) induces a tremendous stress reaction by 
activating many biological cascades [27]. This is mainly 
due to surgical trauma, blood contact with foreign mate-
rials, ischemia/reperfusion, abnormal shear stress, and 
hypothermia. Numerous strategies have been examined 
to alleviate or eliminate the undesirable effects of CPB. 
Apart from anesthetic methods, steroid administration 
and ultrafiltration are most popular in clinical practice 
[28, 29]. These methods aim to inhibit the synthesis of 
pro-inflammatory cytokines or eliminate them from the 
circulatory system. All patients enrolled in the present 
study received methylprednisolone.

As expected, compared to the reference point (pre-
operative sample 1), significant inflammatory stimula-
tion, anti-inflammatory responses, and fluctuations of 
metabolic stress and tissue malperfusion indicators were 
observed in both groups. However, patients who received 
NO inhalation had significantly lower levels of pro-
inflammatory cytokines (IL-8, IL-6, IL-1β) and higher 
levels of anti-inflammatory IL-10 (Fig. 2). The effect was 
clinically effective in Fontan-NO patients with signifi-
cantly shorter intubation time and shorter time in the 
ICU (Table  1). Multiple regression analysis showed that 
the clinical outcomes correlated with IL-6 and Il-8 serum 
levels (Table 2).

Cecchia et  al. demonstrated corresponding results. 
They observed lower morbidity and shorter respiratory 
support in children with tetralogy of Fallot receiving NO 

(See figure on next page.)
Fig. 2 Quantitative Luminex‑based analysis of plasma factors. Mean values of plasma factors concentrations. Il-10 interleukin 10, IL-1β interleukin 
1 beta, Il-6 interleukin 6, Il-8 interleukin 8, TNFα tumor necrosis factor α, GM-CSF Granulocyte–macrophage colony‑stimulating factor, SDF-1 stromal 
cell‑derived factor 1, VEGF Vascular endothelial growth factor, IL-1ra interleukin‑1 receptor antagonist, MMP8 matrix metalloproteinase‑8, CK-MB 
creatine kinase myocardial band, NT-proBNP N‑terminal prohormone of brain natriuretic peptide, TIMP-4 tissue inhibitor of metalloproteinase‑4. 
Significant differences in post hoc testing were marked: *p < 0.05, between groups in corresponding timepoints; #p < 0.05 between a reference 
(preoperative sample No 1) value and analyzed timepoint value
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Fig. 2 (See legend on previous page.)
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inhalation (14). IL-6 is key to the inflammatory response 
features; among others, it stimulates the interaction 
between neutrophils and cardiomyocytes, inducing myo-
cardial damage after reperfusion [30]. IL-8 regulates 
trans-endothelial neutrophil migration and neutrophil-
mediated tissue injury [31]. The concentrations of both 
IL-6 and IL-8 were significantly lower in patients receiv-
ing NO inhalation. Fontan-NO patients had higher levels 
of anti-inflammatory cytokine IL-10 (Fig.  2A), a crucial 
cytokine that inhibits pro-inflammatory cytokines and 
mediates protection of the microcirculation against the 
harmful activity of free radicals and proteases [32]. The 
heart-protective properties of exogenous IL-10 have been 
shown in surgical models and laboratory animals through 
improved ventricle function, reduced fibrotic remod-
elling, and lower mortality [33]. In our study, children 
who received NO had significantly reduced activity of 
enzymes which reflected cardiac injury (Troponin I and 
CK-MB) (Fig. 2L and N), suggesting that NO maintained 
the integrity and function of the myocardium during the 
critical reperfusion period.

Patients who received NO inhalation had a lower cat-
echolamine index and propensity to shorter effusions. 
What is more, heart dysfunction indicators were cou-
pled with CAI and effusions time in multiple regression 
models (Table  2.). In overloaded single ventricle condi-
tions, an essential role of exogenous NO was shown in 
ischemia-induced preconditioning, cytoprotection, and 
resistance to ischemia–reperfusion injury of the heart 
[34, 35]. In our study, exogenous NO inhaled into the 
oxygenator flowed with oxygenated blood through the 
aortic cannula to the ascending aorta and directly to the 
coronary circulation. Although it is primarily inactivated 

in the blood by binding to oxy- and deoxyhemoglobin, 
a circulating pool of bioavailable NO was sufficient to 
improve and optimize perfusion [36].

Factors that reflect the general response to stress and 
tissue perfusion disturbances (prolactin, lactates, glu-
cose, leptin, insulin, pentraxin-3, MMP-8, TIMP-4) were 
up-regulated in both groups (Fig.  2). A lower insulin 
level in the Fontan-NO group remains in line with a less 
pronounced inflammatory response, lower Il-6 and Il-8 
levels, and higher Il-10 levels [37]. Although the popu-
lation characteristics (age, gender, dominant ventricle 
anatomy, preoperative oxygenation, CPB time, and cross-
clamp time) were comparable in both groups, lactate 
and glucose concentrations were significantly lower in 
patients receiving NO inhalation (Table 1). No difference 
was noted in heart rate and systolic and diastolic blood 
pressure. However, a central venous pressure reflecting 
pulmonary artery pressure after Fontan surgery was sig-
nificantly lower within the first 8 h in Fontan-NO group. 
These results reflect a less pronounced stress response in 
Fontan-NO patients and better protection of pulmonary 
and coronary circulations. The results also suggest the 
rationale of maintaining NO inhalation following CPB 
and extubation (i.e. through nasal cannula).

MMP-8, a metalloproteinase related to neutrophil 
activity, was most elevated in both groups after reperfu-
sion of the heart and lungs; however, its activity was sig-
nificantly lower in the Fontan-NO group (Fig.  2). This 
corresponds with the reduced Il-6 and Il-8 levels and the 
lower number of mobilized neutrophils in the Fontan-
NO group (30, 31). The counteracting MMP-8 tissue 
metalloproteinase inhibitor TIMP4 followed the dynam-
ics of MMP-8 and was significantly higher in Fontan-NO 
patients. Ischemia–reperfusion injury of the lungs dur-
ing CBP involves infiltrating the tissue by neutrophils 
and releasing cytokines and other harmful mediators like 
MMPs and TIMPs [38]. IL-6, Il-8, and TNFα increase 
the expression and release of MMPs [39]. Furthermore, 
MMP-8 has been shown to contribute to acute lung 
injury in the postoperative period [40]. The improved 
clinical response in the Fontan-NO patients implied bet-
ter lung protection, which corresponds to the functional 
readouts.

A potential limitation of the study was that not 
all patients consented to blood sample collection.
Although proteomic analysis methods were applied, 
the concentration of certain analytes was not detect-
able at all time-points or was too low for the multiplex 
method. Additionally, we only measured several clinical 
variables that were accessible for all patients.

Table 2 Results of stepwise multiple linear regression analysis 
predicting early clinical course

All factors found to be significant in RMANOVA analysis were taken into the 
multiple linear regression models. ICU time intensive care unit hospitalization 
time, CAI max maximal catecholamine index, 6 IL-6 interleukin 6 concentration 
at ICU (4 h after surgery), 6 IL8 interleukin concentration at ICU (4 h after 
surgery), 5 CKMB creatine kinase myocardial isoenzyme activity after by-pass 
discontinuation, 5 TnI troponin I after by-pass discontinuation

Dependent variable Predictors β P

ICU time
Adjusted R2 = 0,22

6 IL‑6 0.52 0.012

CAI max
Adjusted R2 = 0.67

5 CKMB 0.46 0.0008

5 TnI 0.65 0.00002

Respiratory support time
Adjusted R2 = 0.15

6 IL‑8 0.43 0.03

Effusion’s duration
Adjusted R2 = 0.18

5 TnI 0.41 0.04
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Conclusions
Administration of NO to the CPB oxygenator dur-
ing Fontan surgery reduced ventilatory support time, 
improved hemodynamics early after the Fontan pro-
cedure and shortened ICU time. These clinical effects 
were correlated with proteome changes reflecting the 
reduced expression of pro-inflammatory cytokines and 
increased production of anti-inflammatory factors, 
reduced activity of metalloproteinases and increased 
activity of tissue metalloproteinases inhibitors, low-
ered myocardial and lung injury indicators and lowered 
expression of proteins reflecting metabolic stress.
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