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Abstract

Purpose: We investigated if early intensive care unit (ICU) scoring with the Simplified Acute Physiology Score (SAPS
3) could be improved using artificial neural networks (ANNs).

Methods: All first-time adult intensive care admissions in Sweden during 2009–2017 were included. A test set was
set aside for validation. We trained ANNs with two hidden layers with random hyper-parameters and retained the best
ANN, determined using cross-validation. The ANNs were constructed using the same parameters as in the SAPS 3
model. The performance was assessed with the area under the receiver operating characteristic curve (AUC) and Brier
score.

Results: A total of 217,289 admissions were included. The developed ANN (AUC 0.89 and Brier score 0.096) was
found to be superior (p< 10−15 for AUC and p< 10−5 for Brier score) in early prediction of 30-day mortality for
intensive care patients when compared with SAPS 3 (AUC 0.85 and Brier score 0.109). In addition, a simple,
eight-parameter ANN model was found to perform just as well as SAPS 3, but with better calibration (AUC 0.85 and
and Brier score 0.106, p< 10−5). Furthermore, the ANN model was superior in correcting mortality for age.

Conclusion: ANNs can outperform the SAPS 3 model for early prediction of 30-day mortality for intensive care
patients.

Keywords: Machine learning, Artificial intelligence, Artificial neural networks, Intensive care, Critical care, Mortality,
Prediction, Survival

Introduction
Outcome prediction on admission to the intensive care
unit (ICU) is a difficult task as patients are admitted with
a wide array of diseases with varying severity in addition
to patients’ diversity in terms of age and comorbidities.
In this study, we investigate if the current gold stan-
dard of early (within 1 h of admission) ICU-scoring, the
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Simplified Acute Physiology Score (SAPS 3) [1, 2] could
be improved using artificial neural networks (ANN).
An ANN is a collection of nodes or artificial neurons,

which loosely model the neurons of the brain. Each con-
nection or edge, like the synapses in a biological brain, can
transmit a signal from one node to another (see Fig. 1). A
node that receives a signal processes it and subsequently
conducts it outwards to other conjoined nodes. The sig-
nal between nodes is typically a real number, and the
output of each artificial neuron is computed by some non-
linear function of the sum of its inputs. Artificial neurons
and edges typically have weights that adjust as learning
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Fig. 1 ANN. A schematic artificial neural network (ANN) with two hidden layers and a single neuron output

proceeds. The weight increases or decreases the strength
of the signal at a connection [3].
Advances in computing speed and the development of

efficient algorithms have led to a renaissance for machine
learning techniques such as ANNs during the last decade.
The use of machine learning has proven to be valuable
in a wide variety of medical fields, from the interpreta-
tion of cardiac magnetic resonance imaging for mortality
prediction of pulmonary hypertension to detecting skin
cancer [4, 5]. Machine learning has also been found to be
a promising technique in prognostication of the critically
ill but only in conjunction with data available after 24 h
and comparing with the Acute Physiology And Chronic
Health Evaluation (APACHE) model. In a study from
2015, Pirracchio et al. found that an ensemble of machine
learning techniques could improve ICU prediction [6].
Similarly, in Kim et al. [7], the authors used different
machine learning algorithms to estimate ICU mortality
from data collected within the first 24 h of ICU admission.
Current ICU prediction models such as the APACHE,

used for scoring within the first 24 h, theMortality Predic-
tionModel (MPM), used for scoring on admission or after
24 hours, and the SAPS 3 [8] are based on multivariable
logistic regression models. The SAPS 3 uses character-
istics such as comorbidities before ICU admission, the
reason for ICU admission, physiological parameters, and
laboratory findings within 1 h of ICU admission to calcu-
late an estimated mortality risk (EMR) [1, 2]. The SAPS 3
has been re-calibrated several times to improve its perfor-
mance [9]. To our knowledge, machine learning has not
yet been used to improve early prognostication (prospec-
tively registered within the first hour of admission) or
using the massive data repositories of a national intensive
care registry.
The aim of this study was to improve the 30-day

mortality prognostication within the first hour of ICU
admission using ANN modelling on data prospectively
gathered within the first hour of admission (for SAPS 3

prognostication), as well as to identify the smallest pos-
sible subset of the more-than-twenty SAPS 3 parameters
that can retain the same performance as the SAPS 3
model.

Materials andmethods
We identified all first-time adult ICU admissions (exclud-
ing cardiothoracic ICU admissions as these use a different
scoring system) with follow-ups for at least 30 days dur-
ing 2009–2017 from the Swedish Intensive Care Registry
(SIR). Both SAPS 3 parameters and 30-day mortality were
used in this study. Physiological parameters and labora-
tory findings were prospectively recorded within 1 h of
ICU admission, and an estimated mortality ratio (EMR)
was calculated according to the latest Swedish calibration
from 2016. This calculation estimates the 30-day mor-
tality, in contrast to the original SAPS 3 model, which
estimates the in-hospital mortality [9]. In Sweden, the
Reaction Level Scale (RLS85) is often used instead of
the more widespread Glasgow Coma Scale (GCS). For
the studied admissions, 80% had RLS85 recorded, 20%
had GCS recorded, whereas 2.5% had neither. Instead of
translating GCS to RLS85, we chose to transform both
scales to the central nervous system (CNS) scale used by
APACHE II [10] and then use CNS scores in our ANN. See
Table 1 for a comprehensive list of the SAPS 3 parameters.
In order to select an appropriate network, we con-

structed 200 single-output ANNs using two hidden layers,
where the number of nodes in each layer was log-sampled
between 5 and 400. These networks were constructed
using TensorFlow [11], which is a Python-based open-
source machine learning framework developed by Google
LLC (Mountain View, USA). To improve convergence,
training speed, and accuracy, we normalise each layer
using batch normalisation, so that the output of these
have zero mean and unit variance [12]. The loss func-
tion was optimised using the Adam implementation of
stochastic gradient descent (SGD) [13], using a learning
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Table 1 Descriptive statistics

Training set Test set p value Survivors Non-survivors p value

Number of patients 181,075 36,214 177,185 40,104 < 0.001
Women (%) 43.5 42.9 0.032 43.6 42.6 < 0.001
Mean LOS (days) 2.49 (0.52–2.32) 2.50 (0.52–2.34) 0.29 0.383 (0.208–0.841) 0.516 (0.210–1.315) < 10−15

ICU mortality (%) 8.8 8.8 0.85 0.00109 0.47 < 10−15

30-day mortality (%) 18.5 18.5 0.87 0 100 < 10−15

Median SAPS 3 score 53 (42–65) 52 (41–64) 0.30 49 (39–59) 70 (61–80) < 10−15

Median EMRSAPS 3 0.100 (0.027–0.280) 0.090 (0.024–0.261) 0.30 0.065 (0.018–0.176) 0.382 (0.208–0.589) < 10−15

Box I

Median age (years) 65 (48–76) 65 (48–76) 0.66 63 (43–73) 74 (66–82) < 10−15

Comorbidities
Cancer therapy (%) 4.7 4.8 0.51 4.1 7.4 < 10−15

Chronic HF (%) 5.5 5.5 1 4.0 11.8 < 10−15

Haematological cancer (%) 1.7 1.7 0.75 1.2 4.0 < 10−15

Cirrhosis (%) 1.8 1.8 0.64 1.5 3.5 < 10−15

AIDS (%) 0.092 0.102 0.62 0.092 0.100 0.71
Cancer (%) 8.4 8.4 0.88 7.4 12.8 < 10−15

Mean LOS before ICU (days) 1.8 (0–1) 1.7 (0–1) 0.12 1.6 2.8 < 10−15

Location before ICU
Operation (%) 11.4 11.3 0.50 12.5 6.8 < 10−15

Emergency room (%) 53.1 53.2 0.65 54.8 45.8 < 10−15

Other ICU (%) 2.6 2.7 0.57 2.4 3.4 < 10−15

Other (%) 30.0 29.8 0.57 27.4 41.1 < 10−15

Vasoactive drugs before ICU (%) 12.8 12.8 0.73 11.3 19.4 < 10−15

Box II

Unplanned ICU admission (%) 92.7 92.6 0.60 92.0 96.0 < 10−15

Reason for ICU admission
Basic and observational (%) 14.0 14.3 0.10 16.4 3.8 < 10−15

Neurological (%) 46.3 46.2 0.66 46.6 44.7 < 10−11

Cardiovascular (%) 45.3 45.8 0.068 42.5 57.8 < 10−15

Respiratory (%) 46.7 46.9 0.46 45.3 53.2 < 10−15

Hepatic (%) 18.1 18.3 0.46 19.7 11.0 < 10−15

Digestive (%) 27.5 27.8 0.29 29.1 20.8 < 10−15

Renal (%) 27.6 27.9 0.23 27.6 27.6 0.97
Metabolic (%) 33.0 33.2 0.48 34.0 28.8 < 10−15

Haematological (%) 18.9 19.4 0.014 20.5 12.1 < 10−11

Trauma (%) 9.8 9.7 0.40 10.6 6.4 < 10−15

Other (%) 10.5 10.6 0.50 11.1 8.0 < 10−15

Surgical status at ICU admission
No surgery (%) 79.7 79.8 0.60 78.4 85.4 < 10−15

Scheduled surgery (%) 9.0 9.1 0.88 10.2 3.7 < 10−15

Emergency surgery (%) 11.2 11.1 0.41 11.3 10.8 0.0048
Anatomical site of surgery

Transplantation surgery (%) 0.40 0.44 0.25 0.49 0.047 < 10−15

Isolated trauma (%) 0.60 0.59 0.89 0.60 0.61 0.90
Multiple trauma (%) 0.37 0.40 0.39 0.43 0.15 < 10−15

Cardiac surgery (%) 0.41 0.48 0.070 0.44 0.32 0.00085
Neurosurgery (%) 1.2 1.2 0.26 1.2 1.2 0.70
All other types of surgery (%) 17.9 17.8 0.65 19.0 12.8 < 10−15

Acute infection at ICU admission
Nosocomial (%) 2.7 2.8 0.50 2.3 4.5 < 10−15

Respiratory (%) 10.6 11.0 0.059 8.9 18.7 < 10−15
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Table 1 Descriptive statistics (Continued)

Training set Test set p value Survivors Non-survivors p value

Box III

Median GCS 15 (11–15) 15 (11–15) 0.082 15 (13–15) 10 (3–14) < 10−15

Median total bilirubin (μmol/L) 10 (6–17) 10 (6–17) 0.70 10 (6–16) 11 (7–20) < 10−15

Mean max. temperature (°C) 36.8 (36.2–37.5) 36.8 (36.2–37.5) 0.94 36.9 (36.3–37.5) 36.5 (35.8–37.4) < 10−15

Median max. creatinine (μmol/L) 84 (64–123) 84 (64–123) 0.88 80 (63–112) 110 (76–175) < 10−15

Mean max. heart rate (bpm) 98 (80–114) 98 (80–114) 0.52 97 102 < 10−15

Median max. leukocyte count (×109/L) 11.1 (8.0–15.6) 11.2 (8.0–15.6) 0.80 10.9 (7.9–15.0) 12.6 (8.6–17.7) < 10−15

Median min. pH 7.36 (7.29–7.42) 7.36 (7.29–7.42) 0.22 7.37 (7.30–7.42) 7.31 (7.20–7.40) < 10−15

Median min. platelet count (×109/L) 222 (165–287) 222 (164–287) 0.89 225 (169–287) 208 (142–286) < 10−15

Median min. systolic BP (mmHg) 110 (90–130) 110 (89–130) 0.12 111 (90–133) 92 (70–120) < 10−15

Oxygenation
Over pressure ventilation (%) 30.5 30.0 0.093 25.6 51.6 < 10−15

Median FiO2 0.40 (0.30–0.60) 0.40 (0.30–0.60) 0.18 0.40 (0.30–0.50) 0.50 (40–80) < 10−15

Median PaO2 (kPa) 11.9 (9.4–15.9) 11.8 (9.4–15.8) 0.43 12.0 (9.7–16.0) 11.0 (8.7–15.3) < 10−15

Mean values, medians, and modes (always with interquartile ranges) and p values from Wilcoxon Rank test and χ2 test, as applicable
LOS length of stay

rate of 0.001. This choice was made as stochastic gradient
descent-based methods are the current state-of-the-art
technique for optimising ANN loss functions [14]. Regu-
larisation was performed using log-sampled weight decay
with the decay parameter, λ, ranging from 10−7 to 10−3.
To increase feature selection capabilities and to further
improve regularisation, dropout was used, where p was
log-sampled from 5% to 20% on the input layer and 40%
to 60% on the hidden layers [15]. The network was trained
for 100 epochs with a batch size of 512 using ReLU activa-
tion functions on the hidden layers [14]. In order to find
the selected network, fivefold cross-validation was used,
which yielded the hyper-parameters of our network: 158
first-layer nodes and 67 second-layer nodes with a weight
decay of λ = 5.04 × 10−6. The dropout rates were 0.073
(input) and 0.501 (hidden). Data were randomly divided
into six portions, with one portion set aside for inde-
pendent validation purposes (the test set). Simple mean
and mode substitution turned out to perform just as well
as the more advanced methods for imputation, such as
autoencoders [16].
To evaluate the performance of the ANN model, we

examined the receiver operating characteristic (ROC)
curve, which plots sensitivity, against 1-specificity, for var-
ious threshold settings. We used the area under the ROC
curve (AUC) as a performance measure [17]. Differences
in AUC were tested for with the method of DeLong et al.
[18]. Furthermore, we computed the Brier score, which
is a measure of the calibration of a set of probabilistic
predictions; in effect, it is the mean squared error of the
forecast [19]. Differences in Brier scores were tested with
an approximate permutation test with 50,000 permuta-
tions [20]. We evaluated our ANN models with the AUC
of the ROC and the Brier score for the calibration error on
the test set. The ratio between the 30-day mortality and

the EMR is the standardised mortality ratio (SMR), which
is a morbidity-adjusted mortality measure. The SMR is
only interesting as a group measure, as individual SMRs
are either 0 (if the individual has not survived) or EMR−1

i ,
where EMRi is the EMR of individual i (who has survived).
However, a way of defining an individual (or local) SMR is
using smoothing techniques. We applied local polynomial
regression using the default settings of the loess function
of R [21] on mortality and EMR (and then interpolated
evenly over the whole range). We subsequently calculated
the ratio of the smoothed mortality and the smoothed
EMR to obtain smoothed (local) estimates of SMR [22].
One possible interpretation of the SMR is that the closer
the SMR is to 1, the better the EMR prognosticates the
mortality.

Results
A total of 217,289 first-time admissions were identified, of
which 1/6th (n = 36,214) were randomly allocated to the
test set whereas 5/6th (n = 181,075) were randomly allo-
cated to the training set. The median age was 65 years
(interquartile range, IQR 48–76 years), while the median
SAPS 3 score was 53 (IQR 42–65) and 30-day mortal-
ity was 18.5%. Baseline characteristics, including SAPS 3
parameters of the study population, are shown in Table 1.
There were no differences in the SAPS 3 parameters
between the test set and the training set (after correc-
tion for multiple testing) in any of the parameters shown
in Table 1. All performance calculations were based on
the separate test set of 36,214 patients. Our ANN model
outperformed the SAPS 3 model in both AUC (0.89 vs.
0.85, p< 10−15) and Brier score (0.096 vs. 0.110, p<
10−5) in predicting 30-day mortality (see Figs. 2 and 3).
In Fig. 3, we see that the calibration error (that is the dif-
ference between OMR and EMR) in the high EMR range
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Fig. 2 ROC. Receiver operating characteristic (ROC) curve for the artificial neural network (ANN) model and Simplified Acute Physiology Score (SAPS
3) model showed improved area under curve (AUC)

(0.7 – 1) was reduced in the ANN model. The improve-
ment in AUC using the ANN model over the SAPS 3
model for different primary ICU diagnoses can be seen
in Table 2. The ANN model outperformed the SAPS 3
model for all the top primary diagnoses. In our study, an

eight-parameter subset of the SAPS 3 parameters was the
smallest subset that achieved better performance than the
SAPS 3 model. The eight parameters were (in order of
importance for AUC) age, level of consciousness, neuro-
logical cause, cardiovascular cause, cancer, temperature,

Fig. 3 Calibration. Calibration curves (observed mortality ratio (OMR) versus expected mortality ratio (EMR)) for the Simplified Acute Physiology
Score (SAPS 3) model and the artificial neural network (ANN) model demonstrated improved calibration (Brier score 0.096 vs. 0.110, p< 10−5) in the
high EMR range (0.7–1) for the ANN model
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Table 2 The performance of the SAPS 3model and the ANNmodel for different primary ICU diagnoses based on the test set (n = 36,214)

Number of patients AUC of SAPS 3 AUC of ANN p value

Test set 36,214 0.850 (0.846–0.855) 0.889 (0.885–0.893) < 10−15

Cardiac arrest 1,651 0.858 (0.835–0.881) 0.893 (0.875–0.912) < 10−7

Septic shock 1,481 0.846 (0.821–0.870) 0.889 (0.869–0.909) < 10−8

Respiratory failure 1,467 0.830 (0.804–0.856) 0.878 (0.855–0.900) < 10−8

Gastrointestinal haemorrhage 1,324 0.878 (0.858–0.900) 0.910 (0.892–0.927) < 10−5

SIRS 1,320 0.836 (0.811–0.862) 0.884 (0.863–0.906) < 10−8

Trauma 1,301 0.844 (0.820–0.869) 0.882 (0.860–0.903) < 10−5

Bacterial pneumonia 1,173 0.856 (0.830–0.882) 0.895 (0.874–0.916) < 10−7

Seizures 797 0.847 (0.814–0.880) 0.892 (0.865–0.918) < 10−4

Head injury 760 0.833 (0.796–0.869) 0.888 (0.860–0.916) < 10−5

Mean, 95% confidence intervals, and p values were obtained using the method of DeLong [18]
SIRS Systemic Inflammatory Response Syndrome

pH, and leukocytes. The eight-parameter model had an
AUC of 0.851 (95% CI 0.845–0.857) and a Brier score of
0.106 (95% CI 0.106–0.107). In Fig. 4, the SMR is dis-
played as a function of age, the most important prognostic
factor. The ANN model was superior in correcting mor-
tality (with respect to age as a prognostic factor) compared
to the SAPS 3 model, which underestimated the mortal-
ity in the elderly ICU population. Conversely, the SAPS
3 model overestimated the mortality in the younger ICU
population.

Discussion
We have shown that a well-designed neural network
model can outperform the SAPS 3model in the prediction

of 30-day mortality while using the same parameters
obtained within 1 h of admission. The ANN model was
better with regards to both sensitivity and specificity, as
measured by the AUC of the ROC curve (0.89 vs. 0.85,
p< 10−15) and notably in the calibration (Brier score of
0.106 vs. 0.093; p< 10−5). As seen in Fig. 3, the ANN
model was better in predicting 30-day mortality in the
sickest patients, to be specific those with a very high EMR
over 0.70. We noted in Fig. 4 that the ANN model was
superior in correcting the most important prognostic fac-
tor, namely age. This single improvement in detecting a
nonlinear relationship may very well have been the major
contributor to the improved performance of the ANN
model. The improvement in AUC using the proposed

Fig. 4 Age. Standardised mortality ratio (SMR) as a function of age for the Simplified Acute Physiology Score (SAPS 3) model (left panel) and the
artificial neural network (ANN) model (right panel) for the test set (n = 36,214). The ANN model was superior in correcting for age as a prognostic
factor (the single most important prognostic factor) as compared to SAPS 3. SMR is shown with a 95% confidence interval
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ANN model over the SAPS 3 model varied for differ-
ent diagnoses, as shown in Table 2. However, it is worth
noting that the proposed ANN model outperformed the
SAPS 3 model for all considered cases. As can be seen
in the table, the poorer the performance in the SAPS 3
model, the bigger the improvement in the proposed ANN
model. For example, in respiratory failure, the SAPS 3
model performs less well with an AUC of 0.83, which
improved to 0.88 when using the ANNmodel. Conversely,
in gastrointestinal haemorrhage, the SAPS 3 model per-
forms well, with an AUC of 0.88, which is then only
marginally improved to 0.91 when using the ANN model.
In our study, an eight-parameter subset of the SAPS 3
parameters was the smallest subset that achieved better
performance than the SAPS 3 model. This finding sug-
gests the possibility of using a simple ANN model in the
place of the SAPS 3 model, which would then require
less resources and would increase the likelihood of suc-
cessful registrations, something which would be optimal
when introducing a new national ICU registry. An inter-
esting comparison can be made with Granholm et al.
[23], who developed a seven-parameter logistic regression
model using parameters registered up to 24 h before and
after admission for 90-day mortality prediction of general
ICU admissions and severe sepsis/septic shock achieving
an AUC of 0.72 (95% CI 0.71–0.74). Our eight-parameter
ANN model used parameters registered within 1 h of
admission achieved an AUC of 0.85, clearly indicating the
superiority of machine learning for complex data. Pirrac-
chio and colleagues used the publicly available MMIC-II
database that consists of data on 24,508 ICU patients at
the Beth Israel Deaconess Medical Center in Boston, USA
[6]. They used a super learner algorithm that performs
at least as well as the best performing algorithm of its
12 algorithms—one of which was an ANN. Their find-
ing was that a random forest algorithm performed best,
and they reached a cross-validated AUC of 0.88 (95% CI
0.87–0.89), as compared to 0.82 reached by APACHE II.
In Pirracchio’s study, they had access to SAPS II data and
APACHE II data, both of which are registered within the
first 24 h of admission (in contrast with SAPS 3 that only
use data from the first hour). It is significant to note that
the AUC should be higher, as it is considerably easier to
prognosticate mortality with data obtained within 24 h
than it is within 1 h of ICU admission. Kim and colleagues
compared a range of machine learning techniques for the
identification of ICU mortality with APACHE III, using
data recorded within the first 24 h, making it difficult to
compare their AUCs with our study [7]. They reached an
AUC of 0.87 with 15 parameters, which was the same as
APACHE III, based on data from 23,446 ICU patients at
Kentucky University Hospital in the USA during 1998–
2007. It is clear that our AUC of 0.89 using data from only
the first hour of admission is better than other models

relying on more information using data recorded during
the first 24 h. It is also worth mentioning that some other
studies report AUCs on the training data and not the test
data, something which should be discouraged due to the
potential of achieving misleading AUCs by overfitting and
therefore not being discussed here.
The main limitation of our study, as with all neural

network models is that they can be viewed as “black
box” models, i.e. there is little insight in how individ-
ual parameters contribute to the prediction. This prob-
lem is somewhat alleviated by ranking the predictors
after their contribution to the total AUC. It is, however,
inherent to many non-linear problems that the com-
plex interactions found within the data are not easily
expressed and interpreted. We believe that the primary
aim of a good predictor is to just that: a good predictor
(of mortality).
ICU prognostication is an ongoing process and will

most likely improve significantly over the next decade due
to an increasing amount of patient-level data. Based on
this study, we believe logistic regression-based predictive
modelling should be abandoned and instead replaced with
machine learning algorithms like ANN.

Conclusion
Our ANN model outperformed the SAPS 3 model (using
the same data) in early (within 1 h of admission) pre-
diction of 30-day mortality for intensive care patients in
both AUC and calibration on a massive (217,289 admis-
sions) dataset from the Swedish Intensive Care Registry.
The superiority of our ANN model was also seen in the
fact that an eight-parameter ANN model still outper-
formed the SAPS 3 model that uses over 40 parameters.
The perhaps most important result was the fact that
the ANN model was superior in correcting for the most
important prognostic parameter, age. We thus encour-
age intensive care registries to use ANN models for
short-term mortality predictions in quality control and
research.
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