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Dynamics of fibrinogen in acute phases of
trauma
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Abstract

Fibrinogen is a unique precursor of fibrin and cannot be compensated for by other coagulation factors. If plasma
fibrinogen concentrations are insufficient, hemostatic clots cannot be formed with the appropriate firmness. In severe
trauma patients, plasma fibrinogen concentrations decrease earlier and more frequently than other coagulation factors,
predicting massive bleeding and death. We review the mechanisms of plasma fibrinogen concentration decrease, which
include coagulation activation-induced consumption, hyper-fibrino(geno)lysis-induced degradation, and dilution by
infusion/transfusion. Understanding the mechanisms of plasma fibrinogen concentration decrease in severe trauma
patients is crucial.
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Background
Fibrinogen is a glycopeptide that facilitates the formation
of blood clots. It is synthesized in hepatocytes, with a
molecular weight of 340 kDa [1, 2]. The plasma fibrinogen
concentration is 1.5–4.0 g/L (as measured using the
Clauss method), the highest level among other coagulation
factors [1, 2]. As a unique precursor of fibrin, fibrinogen
cannot be compensated for by other coagulation factors; if
fibrinogen levels are insufficient in bleeding situations,
fibrin clots for hemostasis cannot be formed with appro-
priate firmness [1, 2]. Furthermore, fibrinogen also acts as
the ligand for glycoprotein IIb/IIIa receptors, found on the
platelet surface, thereby accelerating platelet aggregation,
similar to the role of the von Willebrand factor [2, 3]. In
cases of thrombocytopenia, clot strength increases in
direct proportion to plasma fibrinogen concentration,
independent of platelet count [4]. Therefore, in acute
phases of severe trauma, where bleeding control is import-
ant, fibrinogen plays a central role in hemostasis.

Fibrinogen level in acute phases of trauma
In cases of severe trauma, depleted plasma fibrinogen
levels are frequently observed before dilution by infu-
sion [5–9]. Furthermore, plasma fibrinogen levels

deteriorate more frequently and earlier than other
routine coagulation parameters (prothrombin time,
activated partial thromboplastin time, and platelet
count) in severe trauma patients [5]. In a Japanese
multicenter retrospective study, 25% of severe trauma
patients (Injury Severity Score ≥ 16) had decreased
plasma fibrinogen concentrations on arrival at the
emergency department [6]. Critical (≤1.0 g/L) and
abnormal (1.0–1.8 g/L) fibrinogen levels were also
reported in 21 and 44% of severe trauma patients
who required massive transfusions, respectively [8].
Decreased plasma fibrinogen levels on arrival at the
emergency department are an independent predictor
of massive transfusion requirement and death in
severe trauma patients [5–9].
Although decreased plasma fibrinogen levels on

arrival at the emergency department are an important
risk factor of poor outcomes, the plasma fibrinogen
concentration threshold considered as critically low
has not been well-established in trauma patients. A
decade ago, guidelines suggested that plasma fibrinogen
concentrations of 1.0 g/L represented the critical threshold
in bleeding patients [10]. However, recent guidelines have
suggested that concentrations should be maintained over
1.5–2.0 g/L in severe trauma patients [11]. Furthermore,
several retrospective studies indicated that fibrinogen
levels ≤1.9 g/L on emergency department admission
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were independent predictors for massive bleeding and
death [6, 12]. Based on these findings, the appropriate
critical plasma fibrinogen threshold will be 2.0 g/L.

Mechanisms of plasma fibrinogen decrease
Since, plasma fibrinogen concentrations decrease earlier and
faster than other coagulation factors in severe trauma
patients [5, 9, 13], elucidating the responsible mechanisms is
of particular interest. There are three proposed mechanisms
for plasma fibrinogen decrease: (1) coagulation activation-
induced consumption, (2) hyper-fibrino(geno)lysis-induced
degradation, and (3) dilution by infusion/transfusion. Both
coagulation activation-induced consumption and hyper-
fibrino(geno)lysis-induced degradation are caused by severe
trauma itself (Fig. 1).

Coagulation activation-induced consumption
Following trauma, and particularly blunt trauma compli-
cated by severe tissue injury, massively injured tissues
accelerate spontaneous thrombin generation, induced by
pro-coagulants in plasma (Fig. 2) [14–17]. These circu-
lating pro-coagulants are known as damage-associated
molecular patterns (DAMPs) [18–26] and microparticles
[27–32] released from injured organs/tissues.
Extracellular DNA and DNA-binding proteins are the

principal DAMPs that comprise the pro-coagulants
detected in severe trauma patients. Histone and histone-
complexed DNA fragments have been detected in the
systemic circulation just after trauma [18, 19]. Furthermore,
early release of high mobility group box nuclear protein 1
(HMGB-1), which is a non-histonal DNA binding pro-
tein [20–23], and mitochondrial DNA [24–26] are also

observed just after trauma. Elevation of the levels of these
DAMPs is related with inflammation, coagulation activa-
tion, massive bleeding, and poor outcome [18–26].
Various cell-derived microparticles have been detected

during the acute phase of severe trauma [27–32]. Platelet-
derived microparticles are well-known pro-coagulants in
the acute phase of trauma [27–29]. Furthermore,
leukocyte-, erythrocyte-, and endothelial cell-derived
microparticles are also released into the systemic circula-
tion in the acute phase of trauma (29, 30). In animal
models of brain trauma, brain-derived microparticles that
expressed neuronal or glial cell markers were detected
in the systemic circulation [31, 32]. These microparti-
cles were confirmed to express not only pro-coagulant
phosphatidylserine but also tissue factor on their mem-
branes [29, 31, 32].
These DAMPs and microparticles are released into the

plasma from injured organs/tissues just after trauma and
activate the coagulation cascade following the conver-
sion of fibrinogen to fibrin. Furthermore, massive
DAMPs and microparticles induce consumptive coagu-
lopathy [23, 30, 31].

Hyper-fibrino(geno)lysis-induced degradation
The newly formed fibrin is subsequently converted to a D-
dimer and fibrin/fibrinogen degradation products (FDP) via
degradation by hyper-fibrino(geno)lysis, which is a combin-
ation of fibrinolysis and fibrinogenolysis [12, 16].
Coagulopathy caused by severe trauma is known as

disseminated intravascular coagulation with fibrinolytic
phenotype and is characterized by hyper-fibrino(geno)lysis,
which is a combination of fibrinolysis and fibrinogenolysis

Fig. 1 Mechanisms of plasma fibrinogen concentration decrease by severe trauma itself. t-PA, tissue-plasminogen activator; α2-PI, α2-plasmin inhibitor
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[5, 12, 14–17, 33–42]. Hyper-fibrino(geno)lysis is caused by
the acute release of tissue-plasminogen activator (t-PA) and
by coagulation activation.

Shock-induced fibrino(geno)lysis
Weibel-Palade bodies are storage granules found in
systemic vascular endothelial cells and normally contain
t-PA [43–45]. The t-PA found in Weibel-Palade bodies
are released into circulation during tissue hypoperfusion
(severe shock), in a process known as acute release of t-PA
[43, 44]. This rapid t-PA release from endothelial cells acti-
vates the conversion of plasminogen to plasmin and
induces hyper-fibrino(geno)lysis [12, 16, 46, 47]. Shock-
induced hyper-fibrino(geno)lysis are confirmed as lysis of
clot formed in its test tube by thromboelastometry, such as
ROTEM®, and is a predictor for massive bleeding and
death [48–53]. Typical hyper-fibrino(geno)lysis detected

via thromboelastometry is infrequent and is associated
with very high mortality rates [48, 51, 53].

Coagulation activation-induced fibrino(geno)lysis
In severe trauma, elevations in D-dimer and FDP levels are
frequently observed and are complicated with coagulopathy,
regardless of severe shock [6, 12, 16, 54–59]. Although
severe head trauma is not generally complicated with shock,
trauma-induced coagulopathy is frequently observed with
this type of injury [54, 56–58]. Kushimoto et al. [54] have
indicated that patients with severe head trauma and poor
outcomes have elevated fibrinogen degradation product
(a kind of FDP) levels and markedly decreased
fibrinogen levels on emergency department admission.
Elevated fibrinogen degradation product levels corre-
lated with elevated plasmin-α2 plasmin inhibitor complex
levels are reported to result in hyper-fibrino(geno)lysis

Fig. 2 Spontaneous thrombin generation in severe trauma cases. a Stimulated thrombin generation curve in control (blue) and trauma (red) groups.
Although thrombin generation is lower in the trauma group than the control group, time to thrombin generation initiation and time to peak thrombin
generation are shorter in trauma patients compared to control, suggesting coagulation activation. b Non-stimulated thrombin generation curve in the
trauma (red) group. Spontaneous thrombin generation was not observed in the control group, demonstrating the presence of circulating pro-coagulants
in the trauma group. This figure was adapted from [33] with permission from Wolters Kluwer Health, Inc.
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[54]. Many other studies reported the presence of D-dimer
and FDP in not only cases of isolated head trauma
[54, 56–59] but also torso trauma regardless of shock
[6, 12, 16]. Furthermore, another investigation re-
ported that hyper-fibrino(geno)lysis in severe head
trauma is not directly related to shock [60]. This type
of hyper-fibrino(geno)lysis is not caused by the shock-
related acute release of t-PA, but by massive tissue
injuries-induced coagulation activation [54, 60]. Some
reports have indicated that high levels of circulating
pro-coagulants are related to high levels of D-dimer
and t-PA [19, 23]. In an animal study, tissue factor
administration induced coagulation activation and re-
active hyper-fibrino(geno)lysis without shock [55]. In
severe trauma, especially blunt trauma, massively in-
jured tissues accelerate thrombin generation [14–17].
This excessive thrombin generation not only induces
fibrin formation, but also simultaneously promotes
plasmin generation and the consumption of α2-plasmin
inhibitor [36, 41, 61]. Low levels of the α2-plasmin inhibi-
tor trigger the release of plasmin and induce hyper-
fibrino(geno)lysis.

Dilution by infusion/transfusion therapy
Severe trauma-related depletion of plasma fibrinogen
levels is observed before and upon emergency depart-
ment admission, and levels continue to decrease after
blood infusion/transfusion therapy initiation [5–9]. We
showed that plasma fibrinogen levels deteriorate earlier
and more frequently than other routine coagulation
parameters (prothrombin time, activated partial thrombo-
plastin time, and platelet count) in severe trauma patients
after the initiation of infusion/transfusion therapies [5].
Furthermore, even in massive bleeding cases without severe
tissue injuries and shock, plasma fibrinogen is more easily
decreased to critical levels than other coagulation factors by
infusion/transfusion therapy in the absence of plasma
administration [13, 62]. Therefore, fibrinogen and/or
plasma should be aggressively supplemented in patients
with severe trauma [63–65].

Evaluation and treatment for fibrinogen consumption and
hyper-fibrino(geno)lysis in clinical settings
In clinical settings, we usually evaluate the plasma
fibrinogen level by conducting measurements in a
laboratory. Although knowledge of plasma fibrinogen
levels is required for prompt treatment of patients with
severe trauma, the laboratory measurements of fibrino-
gen levels usually takes more than 30 min. Therefore,
the early evaluation of fibrinogen levels is considered
important [4, 7, 48, 50, 51, 53, 66]. Thromboelastometry
has been widely used for early evaluation of fibrinogen
level in severe trauma patients [4, 7, 48, 50, 51, 53].
However, the technique requires 10 to 15 min to

measure fibrinogen levels, thus, limiting its application
[4, 7, 48, 50, 51, 53]. Another technique used for early
evaluation of fibrinogen levels is by measuring the levels
using a compact whole blood coagulation analyzer
(CG02N; A&T Corporation, Kanagawa, Japan) [66, 67].
The analyzer can rapidly measure fibrinogen concentra-
tions in whole blood within 2 min, allowing for a rapid
and accurate diagnosis of fibrinogen deficiency [66, 67].
In any case, it is important to promptly evaluate fibrino-
gen deficiency and to supplement fibrinogen and/or
plasma in severe trauma patients [63–65].
Early evaluation of hyper-fibrino(geno)lysis is difficult in

clinical settings. Shock-induced hyper-fibrino(geno)lysis is
diagnosed via thromboelastometry [48–53]. However, the
technique requires more than 30 min to evaluate hyper-
fibrino(geno)lysis [48–53]. Furthermore, coagulation
activation-induced fibrino(geno)lysis cannot be evaluated
based on thromboelastometry [68]. However, note that el-
evated D-dimer levels are reflected not only in shock-
induced hyper-fibrino(geno)lysis but also in coagulation
activation-induced fibrino(geno)lysis [6, 68]. Therefore,
hyper-fibrino(geno)lysis may be evaluated via evaluation
of D-dimer levels in patients with acute phase trauma
[6, 68]. When hyper-fibrino(geno)lysis is observed or
speculated in acute phase of trauma, anti-fibrinolytic
drug (tranexamic acid) should be administrated as soon
as possible [69].

Conclusions
Although fibrinogen is an important factor in hemostasis, it
is easily decreased to critical levels in severe trauma
patients [5–9, 13, 62]. To avoid hyper-fibrino(geno)lysis,
which deteriorates fibrinogen concentrations, early admin-
istration of an anti-fibrinolytic drug (e.g., tranexamic acid)
improves severe trauma patients’ mortality rates [69].
Aggressive supplementation of fresh frozen plasma is
effective in countering decreased fibrinogen concentrations
[63]. Studies evaluating effective fibrinogen supplementa-
tion in severe trauma are currently underway [70, 71].
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