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Abstract

Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised
patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa
pneumonia. The major pathogenic toxins among the exoproducts of P. geruginosa and the mechanism by
which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found

to contribute to acute lung injury. P. geruginosa secretes these toxins through the recently defined type lI
secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target
eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins,
and regulatory components. In the P. geruginosa genome, a pathogenic gene cluster, the exoenzyme S regulon,
encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type lll secretory toxins,
namely ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa. ExoS is a 49-kDa form of exoenzyme S,
a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis,
the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology
to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that

increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation.
ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major
pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical
isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named P. aeruginosa
pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in P. aeruginosa
pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the
potential to decrease acute lung injury and improve clinical outcome.
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Introduction

Pseudomonas aeruginosa is one of the most common
gram-negative pathogens causing pneumonia in immuno-
compromised patients [1-4]. Ventilated patients are at par-
ticularly high risk of developing P. aeruginosa pneumonia
[5,6], and the mortality rate of ventilator-associated pneu-
monia (VAP) due to P. aeruginosa is significantly higher
than that due to other pathogens [7-9]. Some P. aeruginosa
strains possess the ability to destroy the integrity of the al-
veolar epithelial barrier, causing rapid necrosis of the lung
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epithelium and bacterial dissemination into the circulation
[10,11]. Understanding the mechanism by which virulent
strains of P. aeruginosa cause acute lung injury is critical
for preventing subsequent sepsis and death. The present
review summarizes the progress and explains the mecha-
nisms causing acute lung injury and sepsis, focusing on the
type III secretion system (TTSS) of P. aeruginosa.

Review

Acute lung epithelial injury caused by P. aeruginosa
Acute lung injury in animal models

P. aeruginosa secretes various toxic exoproducts (Table 1).
Investigation of the toxic exoproducts of P. aeruginosa
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Table 1 The major toxic exoproducts of Pseudomonas aeruginosa

Exoproducts Locus ID, PA number Effect on host Secretion type Regulation system
Exotoxin A toxA, PA1148 Antiphagocytic, cytotoxic Type Il (LasR-Lasl quorum sensing)
Exoenzyme S exoS, PA3841 Antiphagocytic, cytotoxic Type lll ExsA-activated type Il system
Elastase (LasA, LasB) lasA, PA1871 Elastolytic activity Type Il LasR-Lasl quorum sensing
lasB, PA3724
Alkaline proteinase aprA, PA1249 Type | LasR-Lasl quorum sensing
Phospholipase C plcH, PA0844 Disturbance of membrane lipid metabolism Type Il Inorganic phosphate
plcN, PA3319

with major roles in acute lung injury began in the late
1980s. In animal models, acute lung epithelial injury was
quantified through the measurement of bidirectional pro-
tein movement across the lung epithelial barrier [12-14].
In this model, the airspace instillation of live P. aeruginosa
resulted in increased movement of the alveolar tracer into
the vascular compartment, a twofold increase in the vas-
cular tracer in the airspace, and a significant reduction in
liquid clearance by the lung, while instillation of Escheri-
chia coli endotoxin did not cause lung epithelial injury.
These early animal experiments initiated the search for a
major virulence factor responsible for acute lung epithelial
injury among the exoproducts of P. aeruginosa [15,16].

Discovery of a major cytotoxin: ExoU

The P. aeruginosa toxin exoenzyme S was identified in
the late 1970s as an ADP-ribosyltransferase distinct from
exotoxin A [17,18]. Early studies revealed that the exo-
enzyme S-positive phenotype correlated with increased
virulence in lung infections and burn wounds [19-24].
The protein transcriptional regulator ExsA was found to
regulate the production of exoenzyme S and co-regulated
proteins [25-27]. PAO-S21, an insertional mutant of trans-
poson Tn501 in the exsA gene of P. aeruginosa, is exo-
enzyme S-deficient [15,19]. PAO-S21 infection did not
result in altered protein flux across the alveolar epithelial
barrier [15]. Based on these findings, exoenzyme S, or an
unknown exoenzyme S-related toxin regulated by ExsA,
was determined to play a major role in acute lung injury.
Exoenzyme S activity was later determined to be the result
of two highly homologous toxins, ExoS (a 49-kDa form of
exoenzyme S) and ExoT (a 53-kDa form of exoenzyme S),
encoded by two separate regions of the P. aeruginosa gen-
ome [28-31].

The virulent P. aeruginosa strain PA103, lacking the
49-kDa form of the exoenzyme S gene (exoS) but posses-
sing the 53-kDa form (exoT), causes a high degree of
acute injury [16]. Because the isogenic mutant lacking
the 49-kDa form of exoenzyme S remained capable of
causing acute lung injury in a rabbit model, it was ini-
tially considered possible that ExoT is the major factor
underlying acute lung injury [16]. However, an isogenic

mutant lacking ExoT remained capable of causing alveo-
lar epithelial injury in a mouse model [32]. Thus, neither
ExoT nor ExoS was the major virulence factor. PA103
was found to secrete a unique unknown 74-kDa protein,
the production of which decreased with a transposon
mutation in exsA. The gene encoding this 74-kDa pro-
tein was cloned, and a mutant missing this protein was
created in PA103. PA103 lacking this 74-kDa protein
failed to cause acute lung injury in our mouse model
[33,34]. This protein, regulated by ExsA, was named
ExoU. Clinical isolates with a cytotoxic phenotype in vitro
were found to express ExoU and cause acute epithelial in-
jury in a mouse model [33]. Cytotoxic P. aeruginosa
isolates were identified to possess exoll, while noncyto-
toxic isolates lacked the gene [33]. High cytotoxicity,
severity of lung epithelial injury, and bacterial dissemin-
ation into the circulation appeared to show a high cor-
relation with the exol genotype [35,36]. Therefore, it
was concluded that the ability of P. aeruginosa to cause
acute lung epithelial injury and sepsis is highly linked
to the expression of ExoU, regulated by the transcrip-
tional activator ExsA [33,34].

Type lll secretion system
The secretion systems of gram-negative bacteria
Gram-negative bacteria, which have inner and outer bac-
terial membranes, use dedicated secretion systems to
transport proteins synthesized to the outside environ-
ment. The secretion systems of gram-negative bacteria
can be classified into six subtypes [37]. The type I secre-
tion system is relatively simple, consisting of only a few
proteins. Unlike proteins secreted by the type II secre-
tion system, proteins secreted by the type I secretion
system contain no signal sequence at their amino ter-
mini; instead, they contain domains at their carboxyl ter-
mini necessary for recognition by the type I secretion
complex. The type II system conducts so-called sec-
dependent secretion [38]. Proteins secreted by the type
II system possess amino-terminal signal sequences of
16—-26 residues [38].

The type III and IV secretion systems have been more
recently defined (Figure 1). Recently, a high degree of
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Figure 1 Gram-negative bacterial protein secretion system. In
the type I and Il secretion systems, bacteria secrete toxins into the
extracellular space (upper image). In the type Ill and IV secretion
systems, bacteria directly secrete toxins into the cytosol of target
eukaryotic cells through the secretion apparatus (lower image).

association has been reported to exist between the type
III and IV secretion systems and the pathogenesis of
gram-negative bacteria [37,39]. In both the secretion sys-
tems, bacteria directly deliver proteins into the cytosol
of target eukaryotic cells [40]. Evolutionarily, TTSS is de-
rived from flagella, while the type IV system is derived from
a conjugational system [39,41]. TTSS is utilized by most
pathogenic gram-negative bacteria, including Yersinia,
Salmonella, Shigella, E. coli, and P. aeruginosa (Table 2)
[42]. TTSS functions as a molecular syringe, directly
delivering toxins into the cytosol of cells [43]. The
translocated toxins modulate eukaryotic cell signaling.
All TTSSs studied till date share an important feature:
the genes encoding this system are upregulated by dir-
ect contact between bacteria and host cells, with conse-
quent direct delivery of bacterial virulence products (type
III secretory toxins or effector molecules) into the host
cell via the secretion and translocation apparatus [42]. In
P. aeruginosa, exoenzyme S was initially thought to be se-
creted via the type II secretion pathway. However, based
on the genomic homology to other gram-negative bac-
teria, this toxin and co-regulated toxins (ExoT, ExoU, and
ExoY) were ultimately determined to be translocated as
effector proteins into host cells via TTSS [44].

Page 3 of 11

Table 2 Type Il secretion systems in animal-associated
gram-negative bacteria

Bacteria Effect on host Secreted Secretion
proteins apparatus

Pseudomonas Cytotoxic, antiphagocytic  Exo, Pop  Psc

aeruginosa

Bordetella spp. Cytotoxic Bop Bsc

Burkholderia Facilitates invasion, etc. Bop Bsa

pseudomallei

Chlamydia spp. Prevents microtubule Cop Cds

assembly, etc.
Pathogenic E. coli  A/E lesion formation Esp, Tir ~ Sep
Salmonella spp. Bacterial entry, apoptosis  Sip, Sop  Inv, Prg,
Spa, Sip
Shigella spp. Bacterial entry, apoptosis  Ipa, VirA  Spa, Mxi
Yersinia spp. Cytotoxic, antiphagocytic ~ Yop, Lcr  Ysc

Genomic organization of P. aeruginosa TTSS

TTSS of P. aeruginosa is highly homologous to the
prototypical Yersinia TTSS [45,46]. The whole genome
of P. aeruginosa strain PAO1 was sequenced by the
Pseudomonas Genome Project and published in 2000
(Figure 2) [47]. It was found that the 25.6-kb genomic
region, named the exoenzyme S regulon, encodes genes
underlying the regulation, secretion, and translocation of
TTSS [48]. Expression of these genes is under the regu-
lation of the transcriptional activator protein ExsA, and
ExsA itself is encoded by the exsCBA operon in the exo-
enzyme S regulon [28,48].

In the genome of P. aeruginosa PAO1, three type III
secretory toxins (excluding ExoU), co-regulated with
the exoenzyme S regulon by ExsA, have been identified
(Figure 2). These are ExoS (a 49-kDa form of exoenzyme
S), ExoT (a 53-kDa form of exoenzyme S, also known as
exoenzyme T), and ExoY [31,49]. The genes encoding
these type III secretory toxins (exoS, exoT, and exoY) are
distributed in regions of the genome separate from the
exoenzyme S regulon [47,48]. Later, two distinct P. aerugi-
nosa pathogenicity islands, PAPI-1 (108 kb) and PAPI-2
(11 kb), which are absent from the less virulent strain
PAO1, were found in the highly virulent clinical strain
PA14, and exolU was discovered in the PAPI-2 region of
this strain [50,51]. Approximately 20% of clinical isolates
are more virulent; they possess exol/, but not exoS [52].

The exoenzyme S regulon

Transcriptional activator ExsA

ExsA, encoded by the exsCBA operon (the trans-regulatory
locus for exoenzyme S secretion) in the exoenzyme S regu-
lon, is a transcriptional activator of the P. aeruginosa TTSS
[48]. In the exoenzyme S regulon, ExsA regulates the tran-
scription of five operons (exsD-pscL, exsCBA, pscG-popD,
popN-pcrR, and pscN-pscll) encoding TTSS and the trans-
location machinery (Figure 2) [48]. Another four or five
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Figure 2 The Pseudomonas aeruginosa genome and type lll secretion regulon and toxin genes. The genomic DNA of P. aeruginosa strain
PAO1 was completely sequenced by the Pseudomonas Genome Project in 2000. Within the 6.3-Mb region, 5,570 open reading frames were
found. The type Il secretion regulatory region (25.5 kb) was found as a gene cluster and named the exoenzyme S regulon. It comprised five
operons, including 36 genes for transcription (exsA-exsD), secretion apparatus (pscB-pscU), and translocation (pcrGVHpopBD). The genes of the type
Il secretory toxins exoS, exoT, and exoY, but not exoU, were scattered throughout the genome. The exoU gene was found to be located in an
insertional pathogenic gene cluster named P. aeruginosa pathogenicity island-2 (PAPI-2) discovered in the virulent clinical strain PA14.

exoU-spcU
in PAPI-2 (10.9 Kb) of PA14 genome

exoenzyme S regulon 36 genes in 25.7 Kb
pscU-pscN (PA1690-PA1697)
popNpcri234DR (PA1698-PA1704)
PCrGVHpopBD (PA1705-PA1709)

exsCBA (PA1710-PA1713)

exsDpscB-pscL (PA1714-PA1725)

ExsA-binding sites have been found in the genome for the
regulation of effector molecules (type III secretory toxins)
and their chaperones [47].

Secretion apparatus

In TTSS, secretion describes the process by which toxins
are transferred from the bacterial cytosol to the surround-
ing medium across the inner and outer bacterial mem-
branes [43]. This process seems to require secretion
apparatus involving many protein components (Figure 3).
All known TTSSs in animals and pathogenic bacteria share
a number of highly conserved core structural components.
The TTSS-specific export apparatus is termed the needle
complex in Salmonella [53,54], Shigella [55], and E. coli
[56]. This structure spans both the inner and outer mem-
branes of the bacterial envelope and closely resembles the

Cap protein

[_ PcrV

Needle components
PscF

QOuter membrane T""mﬂ‘

Tpeeeeeeee
Outer ring components
86608806

ulu PscC
Periplasmic space Ps&cJ Basal components
I N
Inner membrane
LU
ATPase
PscN

Proton-channel components
PcrD, PscR, PscS, PscT, PscU
Figure 3 Pseudomonas aeruginosa type lll secretory apparatus:
the needle complex or injectisome. The type Il secretory
apparatus comprises many protein components: a cap component,
PcrV; a needle component, PscF; an outer ring component, PscG;
and basal components, including PscJ, ATPase PscN, and others.

flagella basal body, further supporting the evolutionary re-
lationship between the flagella and TTSS [41,57].

In Yersinia, ysc genes in the Yop virulon largely encode
components of TTSS, and P. aeruginosa possesses hom-
ologous psc genes in its exoenzyme regulon [45,48]. Ysc
proteins from Yersinia ysc genes and Psc proteins from P.
aeruginosa psc genes are considered as components of
their respective needle complexes because of their se-
quence homology to Salmonella Spa, Prg, and Inv; Shigella
Spa and Mxi; and E. coli Esc proteins.

Translocators and V-antigen

In TTSS, translocation, which describes the process of
direct toxin transfer into the eukaryotic cytosol across
the eukaryotic plasma membrane, has been thoroughly
investigated in Yersinia [45,58-60]. In P. aeruginosa, the
pcrGVHpopBD operon, under regulation by ExsA, en-
codes five proteins, namely PcrG, PcrV, PcrH, PopB, and
PopD, homologous to Yersinia LcrG, LerV, LerH, YopB,
and YopD, respectively (Table 3) [61,62]. Translocation
in the P. aeruginosa TTSS is mediated by PcrV, PopB, and
PopD. In fact, in P. aeruginosa, isogenic mutants lacking
perV or popD were unable to intoxicate eukaryotic cells
[63,64]. Historically, Yersinia LcrV was designated Yersinia
V-antigen and thought to protect mice from lethal in-
fections with yersiniae strains [65,66]. PcrV (P. aerugi-
nosa V-antigen) corresponds to the Yersinia V-antigen
LerV. Antibodies against LerV and PerV are likely to
block type III protein translocation by interfering with
pore formation by LcrV/YopB/YopD and PcrV/PopB/
PopD, respectively [63,64].

Four type lll secretory toxins of P. aeruginosa

Till date, P. aeruginosa is known to secrete at least four
effector molecules (type III secretory toxins) via TTSS:
ExoS, ExoT, ExoU, and ExoY (Table 4, Figure 4). The
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Table 3 Proteins required for the translocation of Pseudomonas aeruginosa Exo effectors

Protein PA Size Amino Homolog in Features Localization Role
number (kDa) acids Yersinia
PcrG PA1705 11 98 LcrG (56%) Binds to PcrV Bacterial cytosol Negative regulator
Pcrv PA1706 323 294 LerV (57%) Cap, Pore Bacterial Surface Translocational pore
PerH PA1707 184 167 LerH/SycD (76%) Binds to PopB and Bacterial cytosol Chaperone for PopB and
PopD PopD
PopB PA1708 40.1 390 YopB (60%—-61%) Pore On eukaryotic cell Translocational pore

PopD  PA1699 313 295 YopD (59%-60%) Pore

membrane

On eukaryotic cell
membrane

Translocational pore

virulence of each strain differs depending on the geno-
types and phenotypes of the type III secretory toxins
[32,33,52].

ExoS

P. aeruginosa exoenzyme S was originally characterized
as a toxin distinct from exotoxin A exhibiting ADP-
ribosyltransferase activity [17]. Exoenzyme S ADP-ribosylates
vimentins and several Ras-related GTP-binding proteins, in-
cluding Rab3, Rab4, Ral, RaplA, and Rap2 [67,68]. The
enzymatic reaction requires a soluble eukaryotic pro-
tein, termed factor-activating exoenzyme S (FAS), to
ADP-ribosylate all substrates [69,70]. Analysis of sev-
eral deletion peptides showed that 222 amino acids at
the carboxyl terminal of exoenzyme S possessed FAS-
dependent ADP-ribosyltransferase activity [69,70]. Expres-
sion of the ADP-ribosyltransferase domain of exoenzyme
S is cytotoxic to eukaryotic cells [71].

The amino-terminal domain of exoenzyme S has been
characterized as a GTPase-activating protein (GAP) for
Rho GTPases [72], suggesting that exoenzyme S is a bi-
functional type III secreted cytotoxin [71]. In vivo data
indicate that the Rho GAP activity of ExoS stimulates
the reorganization of the actin cytoskeleton by inhibiting
Rac and Cdc42 and stimulates actin stress fiber forma-
tion by inhibiting Rho [73].

Table 4 Pseudomonas aeruginosa type lll effector molecules

ExoT

Two immunologically undistinguishable proteins, with ap-
parent molecular sizes of 53- and 49-kDa, co-fractionated
with exoenzyme S activity [18]. Later, these two exoen-
zymes were found to be the products of two different
genes [31]. ExoT was found to encode a protein of 457
amino acids, with 75% amino acid homology to ExoS.
However, ExoT possessed approximately 0.2% of its ADP-
ribosyltransferase activity [74]. ExoT diminishes macro-
phage motility and phagocytosis, at least in part through
disruption of the actin cytoskeleton of eukaryotic cells,
and blocks wound healing [75,76]. Biochemical studies
have shown that ExoT is a GAP for RhoA, Racl, and
Cdc42 [77,78]. These data show that ExoT interferes with
the Rho signal transduction pathways, which regulate
actin organization, exocytosis, cell cycle progression, and
phagocytosis [77,79].

ExoU

In 1997, a novel cytotoxin, ExoU (termed PepA by Hauser
et al. [34]), was found to be a major contributory factor to
lung injury, and the gene exoll was cloned from the cyto-
toxic PA103 strain. A region downstream of exol was
found to encode a specific Pseudomonas chaperone for
ExoU (SpcU) [80]. In P. aeruginosa, ExoU and SpcU are
coordinately expressed as an operon controlled at the
transcriptional level by ExsA [80]. Acquisition of the

Effectors Other names Genes PA Protein Amino Homologous proteins Activity Effect on host
number size acids
ExoS 49-kDa exoenzyme S exoS PA3841 49 kDa 453 Yersinia YopE ADP-ribosyltransferase Antiphagocytosis
Salmonella SptP GAP activity
ExoT 53-kDa exoenzyme S exolT ~ PA0044 53 kDa 457 Yersinia YopE GAP activity Inhibition of wound
Exoenzyme T Salmonella SptP healing
ExoU PepA exolU - 72 kDa 687 Mammalian cPLA2 Patatin-like phospholipase Cell death
Plant patatins Acute lung injury
Bacteremia, sepsis
ExoY - exoY  PA2191 42kDa 378 B. anthoracis EF Adenylate cyclase Edema, inhibition of

Bordetella CyaA

inflammatory cytokine
secretion
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Figure 4 Contact-dependent toxin translocation during type lll secretion in Pseudomonas aeruginosa. P. aeruginosa translocates toxins
after direct contact with the surface of the target eukaryotic cell. ExoS and ExoT modulate the cytoskeleton and endocytosis through interaction
with Ras and/or Rho GTPases; ExoU disrupts the integrity of the lipid membrane by targeting phospholipids; and ExoY causes edema formation

expression of P. aeruginosa ExoU caused increased bacter-
ial virulence and systemic spread in a mouse model of
acute pneumonia [33]. Hauser et al. determined the type
III secretion genotypes and phenotypes of isolates cultured
from patients with VAP: in vitro assays indicated that
ExoU most closely linked to mortality in animal models
was secreted in detectable amounts in vitro by 10 (29%) of
the 35 isolates examined [34].

ExoU has a potato patatin-like phospholipase (PLA)
domain (pfam01734 in the Conserved Domain Database
of BLAST (National Center for Biotechnology Informa-
tion, National Library of Medicine, National Institutes of
Health, Bethesda, MA, USA); Figure 5). Patatin is a
member of a multigene family of vacuolar storage glyco-
proteins with lipid acyl hydrolase and acyltransferase ac-
tivities; it represents 40% of the total soluble protein in
potato tubers [81]. Sequence alignment of ExoU, potato
patatin, and human PLA2 revealed three highly con-
served regions in the amino acid sequence of ExoU [82].
In the alignment, Ser-142 and Asp-344 of ExoU corre-
sponded to the catalytic serine and aspartate of PLA2, re-
spectively [82]. Subsequently, using in vitro models, it was
shown that ExoU exhibits Ser-142- and Asp-344-dependent
catalytic PLA2 activity, which requires eukaryotic cell fac-
tors for its activation [82,83]. Then, it was finally concluded
that virulent P. aeruginosa causes acute lung injury, thereby
causing sepsis and mortality, through cytotoxic activity de-
rived from the patatin-like phospholipase domain of ExoU

[84]. The cells targeted by ExoU injection through TTSS
comprise not only epithelial cells but also macrophages
[85]. Through TTSS, ExoU is activated after its transloca-
tion into the eukaryotic cell cytosol. It has been recently re-
ported that ubiquitin and ubiquitin-modified proteins are
associated with ExoU activation [86,87].

ExoY

ExoY is the fourth type III secretion effector protein con-
trolled by ExoS regulon. ExoY is homologous to the extra-
cellular adenylate cyclases of Bortedella pertussis (CyaA),
Bacillus anthracis (EF), and Yersinia pestis (insecticidal
toxin) [49]. In assays for adenylate cyclase activity, recom-
binant ExoY (rExoY) catalyzed the formation of cyclic ad-
enosine monophosphate (CAMP). In contrast to CyaA and
EE rExoY activity was not stimulated or activated by cal-
modulin. Infection of eukaryotic cells with P. aeruginosa
producing catalytically active ExoY resulted in the elevation
of intracellular cAMP levels and changes in cell morph-
ology [88,89]. It is more recently reported that ExoY is
likely to be a promiscuous nucleotidal cyclase that increases
the intracellular levels of cyclic adenosine and guanosine
monophosphates, resulting in edema formation [90].

Epidemiology of the P. aeruginosa TTSS

Analysis of type III secretory protein phenotypes was
performed in 108 isolates derived from patients with
P. aeruginosa infections [52]. The mortality rate in
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Figure 5 The molecular structure and functional targets of ExoU. P. aeruginosa ExoU, a major factor causing cytotoxicity and epithelial injury in the
lung, contains a patatin domain that catalyzes membrane phospholipids through phospholipase A2 activity. Homology in the amino acid sequence, with
a catalytic dyad in the primary structure, was found between patatin, mammalian phospholipase A2 (cPLA2-a and iPLA2), and ExoU. FFA free fatty acid.
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patients with P. aeruginosa isolates expressing at least one
of the type III secretory proteins was 21% compared with
the rate of 3% in patients with isolates expressing no type
III secretory protein. In another study, infection with iso-
lates secreting TTSS proteins, particularly isolates with an
ExoU-positive phenotype, correlated with severe disease
[91]. Recently, additional reports have demonstrated an
association between the ExoU genotype or phenotype and
a poor clinical outcome of P. aeruginosa pneumonia.
exoll-positive isolates were more likely to be fluoroquino-
lone resistant and exhibit both a gyrA mutation and efflux
pump overexpression [92]. Clinical isolates containing the
exoll gene were more likely to be resistant to cefepime,
ceftazidime, piperacillin tazobactam, carbapenems, and
gentamicin [93]. A fluoroquinolone-resistant phenotype
in an ExoU-positive strain contributes to the pathogen-
esis of P. aeruginosa in pneumonia [94]. However, the ex-
pression of TTSS exoenzymes in P. aeruginosa isolates
from bacteremic patients confers a poor clinical outcome,
independent of antibiotic susceptibility [95]. Severity of
the illness and expression of type III secretory proteins
were the strongest predictors of 30-day mortality from
P. aeruginosa bacteremia [96].

Update the clinical approach against

P. aeruginosa pneumonia

P. aeruginosa expresses a variety of factors that confer re-
sistance to a broad array of antibacterial agents. Multidrug-

resistant P. aeruginosa (MDRP) is defined as the resistance
to carbapenems, aminoglycosides, and fluoroquinolones.
The current increase in the incidence of lethal out-
breaks of MDRP is especially a serious concern. Mul-
tiple genetic rearrangements, such as chromosomal
mutations or horizontal gene transfers (plasmids, inte-
grons, phages), are associated with the acquisition of
multidrug resistance in these bacteria. The various
mechanisms, such as B-lactamases, carbapenemases or
aminoglycoside-modifying enzymes, and mutations in
antibiotic targets, efflux pumps, impermeability, are as-
sociated in these multidrug resistances. In the management
of P. aeruginosa pneumonia, the increasing resistance level
of these bacteria to most classes of antibacterial agents fre-
quently leads to failure of effective treatment, which is
associated with high mortality of the infected patients.
Therefore, choosing adequate antibiotics is crucial to
increase the survival rate, especially in patients infected
with MDRP. Therefore, surveillance in antibiotic resist-
ance must be important to reduce the risk of inad-
equate antibacterial therapy. In addition, surveillance in
TTSSgenotype- and phenotype-associated acute lung
injury and sepsis may help to predict the higher risk of
lethal outbreaks.

Polymyxin E (colistin) remains the most consistently
effective agent against MDPR, while colistin-resistant
P. aeruginosa has been already reported as a caution of the
emergence of pan-resistant strains in the near future [97].
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Figure 6 Acute lung injury caused by Pseudomonas aeruginosa.
P. aeruginosa secretes and injects type Ill secretory toxins (ExoS,
ExoT, ExoU, and ExoY) into alveolar macrophages and epithelial cells,
blocking macrophage phagocytosis, inducing epithelial disruption, and
causing the dissemination of bacterial and inflammatory mediators
from the airspace into the systemic circulation, which eventually results
in bacteremia and sepsis. AM® alveolar macrophages, IL-1 interleukin-1,
IL-8 interleukin-8, TNF tumor necrosis factor.

Different strategies against the different targets must be re-
quired before the spread of super-resistant strains. Among
various experimental therapeutic approaches, the anti-
TTSS therapy is reasonable because acute lung injury due
to P. aeruginosa is highly depending on its TTSS-associated
virulence as described above. PcrV has a critical role in the
TTS-associated virulence of P. aeruginosa as follows [63].
In a series of these studies, active and passive immunization
against PcrV in animal models of P. aeruginosa-induced
lung injury greatly increased survival [63]. Virulent P. aeru-
ginosa strains expressing PcrV disabled macrophage phago-
cytosis. However, antibodies against PcrV blocked this
critical antiphagocytic effect [63]. Passive protection with
anti-PcrV reduced the inflammatory response, minimized
bacteremia, and prevented septic shock in mice and rabbits
[98]. The protective capacity of the antibody was Fc-
independent as F(ab’), fragments of polyclonal anti-PcrV
were also effective [98]. A murine monoclonal anti-PcrV
antibody mAb166 was developed, and its protective effects
on acute lung injury were demonstrated when co-instilled
with the bacterial challenge or passively transferred to
infected animals [99]. The administration of either
mADb166 or Fab of mAb166 showed comparable thera-
peutic effects to rabbit polyclonal anti-PcrV IgG [100].
Based on mAb166, humanized anti-PcrV antibody that
was developed by molecular engineering has recently
entered phase I/II clinical trials in the USA and Europe

Page 8 of 11

for prophylactic and therapeutic uses against P. aeruginosa
pneumonia in artificially ventilated patients and cystic fi-
brosis patients [101-103].

Conclusions

Summary and future implications

P. aeruginosa possesses a sophisticated toxin secretion
system to directly inject toxins into the cytosol of target
eukaryotic cells. This system, called TTSS, is regulated
by the exoenzyme S regulon of P. aeruginosa. Through
TTSS, P. aeruginosa translocates the type III secretory
toxins ExoS, ExoT, ExoU, and ExoY. By injecting these
toxins into the cytosol of eukaryotic cells, P. aeruginosa
exploits mammalian enzyme functions to modulate
eukaryotic cell signaling.

Of these four toxins, ExoU is the major virulence factor
responsible for alveolar epithelial injury in P. aeruginosa
pneumonia. Virulent strains of P. aeruginosa possess the
exoll gene, whereas nonvirulent strains lack the same.
The major pathogenesis of P. aeruginosa-induced acute
epithelial lung injury and subsequent bacteremia and sep-
sis is highly dependent on the ExoU phenotype of the
strain, while the type III secretory toxins ExoS, ExoT, and
ExoY modulate host immunity and cause lung edema
(Figure 6). Progress in the field of translational research
is now anticipated to prevent the acute lung injury and
improve the poor clinical outcome of P. aeruginosa
pneumonia. What we have learned from our attempts
to elucidate the molecular mechanisms underlying
acute lung injury over the last 30 years is how well
pathogenic bacteria utilize our cell signaling to cause
diseases: bacteria know our cell signaling better than
we do.
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